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1 Introduction

In recent years, there has been some interest in systems which are modelled by networks; in

other words, where the structure of the mathematical system is related to the structure of

the network.

In terms of systems of differential equations, the relevant systems are called ‘admissible’

over a network, as described in Golubitsky, Stewart, and Török (2005); Stewart and Parker

(December 2007, 2008), for example. In particular, for any system of differential equations,

there is a network over which the system is admissible; for any network, there is a family of

systems of differential equations which are admissible over this network.

On networks, including networks which model systems of differential equations, there has

been interest in ‘balanced equivalence relations’, which are those equivalence relations on the

cells of a network which respect the structure of the network in a well-defined way. Previous

work (including Golubitsky et al. (2005); Stewart and Parker (December 2007, 2008)) has

investigated these relations; the current author’s MSc thesis, Aldis (2005) continued this

investigation and showed them to form a partially-ordered set, characterising the maximal

element and describing an algorithm for determining this element for arbitrary networks.

This thesis examines some of the outstanding questions about the symmetry properties of ad-
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1 Introduction

missible systems of differential equations over networks. These questions can be summarised

as follows. Given a system of differential equations which is admissible over a network, and

a solution of such a system, we may consider the ‘pattern of synchrony’ of such a solution:

that is, the equivalence relation on the cells of the network determined by permanent equal-

ity of the quantities represented by those cells. A conjecture of Stewart and others is that

all ‘realistic’ solutions of systems of differential equations have patterns of synchrony which

form balanced equivalence relations on the underlying network. Specifically, any pattern of

synchrony which is ‘rigid’, in the sense that small perturbations of the differential equations

do not change the pattern of synchrony, forms a balanced equivalence relation. When is this

“rigid synchrony conjecture” true?

It has been proved by Golubitsky and coworkers that the possible ‘rigid’ patterns of synchrony

of hyperbolic equilibria over a network are determined by the balanced equivalence relations

of the network. Golubitsky’s theorem is as follows:

Theorem (Golubitsky et al. (2005) Theorem 7.6). The equivalence relation �x0 determined

by the hyperbolic equilibrium x0 is rigid if and only if �x0 is balanced.

We give an alternative proof of this theorem in chapter 7. In fact, the statement we prove is

slightly stronger: it only requires the equilibrium to be transverse, not necessarily hyperbolic,

and in the case of an equilibrium with a non-balanced pattern of synchrony, it determines the

maximal rigid pattern of synchrony of that equilibrium (in this case, Golubitsky’s theorem

only states that the maximal pattern of synchrony is not rigid).

Rigid Equilibrium Theorem (Theorem 7.2.3). Let F be an admissible system over a

network N , with some transverse equilibrium x�. The rigid pattern of synchrony of x� is the

maximal balanced equivalence relation refining the pattern of synchrony of x�.

2



1 Introduction

It has been conjectured that a similar result holds for hyperbolic periodic trajectories of

admissible systems of differential equations. This is a conjecture from Stewart and Parker

(December 2007):

Rigid Synchrony Conjecture (Stewart and Parker (December 2007) Conjecture 6.1). Let

G be any coupled cell network, and suppose that X is a periodic orbit of some G-admissible

vector field f . Assume that X is rigid. Then its pattern of synchrony �X is balanced.

The notation used in this thesis differs slightly from that paper, which uses G, X, f and

�X where this thesis would use N , F , x and �x respectively. In addition, we would call

the pattern of synchrony of X rigid, where that paper sometimes applies the adjective to X

itself. Thus our statement of the assumption would be that the pattern of synchrony of x is

rigid.

Stewart and Parker (December 2007) prove a limited version of this conjecture. Here �X

denotes the coarsest balanced equivalence relation refining �X. (When we use the same

concept in this thesis, we denote it 'x.) A ‘tame’ trajectory is one which satisfies a couple of

technical properties to do with symmetries. We shall briefly revisit this concept in chapter 9,

but the reader is referred to the original paper for the full details.

Tame Synchrony Theorem (Stewart and Parker (December 2007) Theorem 10.9). Let G

be a coupled cell network, and let f be a G-admissible vector field. Let X be a rigid periodic

orbit of f . Suppose G{�X is an all-to-all coupled cell network and X{�X is tame, then

�X � �X and �X is balanced.

While this thesis was being written, Golubitsky, Romano, and Wang (Preprint) announced a

proof of the Rigid Synchrony Theorem using methods derived from singularity theory. We

discuss their work briefly in chapter 9. In their notation, their result was as follows:
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Rigid Synchrony Theorem (Golubitsky et al. (Preprint) Theorem 6.1). Suppose Z0 ptq is

a hyperbolic periodic solution of 9Z � F pZq. Then the coloring associated to ∆ pZ0q is rigid

if and only if it is balanced.

We will examine their method briefly in chapter 9.

We give our own limited version of the Rigid Synchrony Theorem, which we prove in chapter 9.

This is an extension of the Tame Synchrony Theorem, in that we require a looser property

than tameness; we also weaken the hyperbolicity requirement, in the following way. It is well-

known that if a periodic trajectory x of a system of differential equations F is hyperbolic,

then it satisfies a property we here call the ‘hyperbolic property’: if F is perturbed by a

sufficiently small amount, then the new system F̂ will have a trajectory x̂ near x. Our

theorem only relies on the hyperbolic property, not the full statement of hyperbolicity.

Semi–Tame Synchrony Theorem (Theorem 9.2.3). If x is a semi-tame Θ–periodic pseudo-

hyperbolic trajectory of a system F of differential equations over a network N , and �x is

unbalanced, then the synchrony of x is not rigid.

We then go on to show that a technical conjecture (introduced in chapter 9) implies the

Rigid Synchrony Theorem. Due to the reliance on the conjecture, we call this the ‘limited

rigid synchrony theorem’.

Limited Rigid Synchrony Theorem (Theorem 9.3.3). Let F be an admissible system over

a network N , with some hyperbolic periodic orbit x. Assume conjecture 9.3.1. Then the

rigid pattern of synchrony of x is the maximal balanced equivalence relation refining �x.

The Rigid Synchrony Conjecture deals with symmetries in the co-ordinates of a system of

differential equations. An obvious extension of this conjecture concerns symmetries in both
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co-ordinates and time. We call these the ‘phase relations’ of a trajectory of such a system:

the relation of θ–shift relates cells with values that are the same, phase-shifted by θ. They

are not, in general, equivalence relations, but we define a new kind of relation, which we call

a forward relation, which encapsulates the properties of these phase relations. Stewart and

Parker (Preprint) speculated about such relations and their structure — in this thesis, we

determine a result about this structure. This result rests upon a slightly different technical

conjecture to that used in the limited rigid synchrony theorem. In particular, we must deal

with a still-weaker version of hyperbolicity. Instead of making a perturbation x̂ of a trajectory

x, setting up a perturbation F̂ of the system F , and then appealing to hyperbolicity (or the

hyperbolic property) to ensure that x̂ is ‘the’ unique nearby trajectory, we set up an alternative

definition of hyperbolicity that takes into account that the disjoint pieces of the network can

be phase-shifted against each other independently.

Note that the technical conjecture used for this limited version of the rigid phase theorem is

quite similar to conjecture 9.3.1: although it is technically stronger, the expectation is that

a similar method of proof would prove both conjectures — the details of this argument are

given in section 10.2.

Limited Rigid Phase Theorem (Theorem 10.3.3). Assume conjecture 10.2.3 holds. Then

the Rigid Phase Conjecture is true: we spell out what this means.

Let N be a network and F an admissible system of differential equations on N with a

hyperbolic trajectory x of period Θ. Let θ P r0,Θq, then the rigid θ–shift relation W9 θx of x

must be the maximal balanced refinement of Wθ
x (as a forward relation over �x on N ).

The essence of our proof of theorem 10.3.3 is to duplicate the given network, to make a

network with two disconnected pieces, each of which is isomorphic to the given network and
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then set up a trajectory on this ‘double’ network which has one piece phase-shifted in relation

to the other: copies of phase-related cells are then synchronous: if the pertinent relations are

unbalanced, an appropriate perturbation can be used to break this synchrony, in exactly the

same way as for the rigid synchrony theorem: provided the trajectory is unchanged at some

times, the perturbed trajectory will project back onto the original network. This projection

then has a broken pattern of θ–shift, as required.

The remainder of this thesis is structured as follows.

Chapter 2 of this thesis sets up the general underlying concepts and pieces of notation which

we use for the remainder of the work; chapter 3 assembles the concepts specific to this area,

in a formulation based on existing work but using slightly different algebraic apparatus.

Chapter 4 contains the proof that the balanced equivalence relations on any given network

form a complete lattice, in the sense of a partially ordered set of which every subset has

a well-defined greatest lower bound and least upper bound. This proof was given in Aldis

(2008) but not previously submitted for assessment. We then go on to consider a new form

of balanced relation, related to the balance equivalence relation, which we call a ‘balanced

forward relation’.

Chapter 5 describes the concept of an ‘admissible’ function, as mentioned above, and gives

some basic, but important, results about these functions. This is the basis for the majority

of the remaining material: chapter 6 brings together admissibility and systems of differential

equations, and asks the outstanding questions in the field, which are summarised above.

Chapters 7,9,10 give proofs of the rigid synchrony conjecture in various cases, as discussed

above: firstly, in chapter 7, we prove the result in any equilibrium solution of a system of

differential equations (this result was proved by a different method in Stewart and Parker
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(December 2007)); in chapter 9 we prove the same result in oscillating solutions (given certain

technical constraints, which are different to those in Stewart and Parker (2008), where a

similar result was proved); we also briefly discuss a proof of this result from Golubitsky et al.

(Preprint).

Chapter 8 is used to set up some of our hyperbolicity terms, and proves our stronger version

of the full oscillation conjecture. This is an interesting result in its own right, but its main

purpose here is as a waypoint in the proof of a particular case of the Rigid Synchrony

Conjecture — and presumably a required waypoint in any proof of the entire conjecture.

We then consider ‘phase relations’: that is, where the quantity represented by a cell at each

time is equal to that represented by another cell at a related time. Chapter 10 builds on the

proofs in the previous chapters to show (assuming a technical conjecture similar to that in

chapter 9) that rigid relations of this form are also derived from balanced relations: in this

case, from the balanced forward relations introduced in chapter 4.

Directions for further study which arise directly from material in the thesis are presented with

the material to which they relate: we conclude with a brief look in chapter 11 at some other

directions which might be worth pursuing further.

7



2 Fundamentals

This chapter introduces some fundamental notions, which are in general use to various

degrees, as well as some non-standard, but trivial, notation and concepts, which we use for

convenience.

To begin, we make some completely non-standard, but entirely trivial, definitions; we then

cover some material on lattices from Davey and Priestley (2002), and note that the natural

order on equivalence relations, given by refinement, makes the set of equivalence relations

on a given set into a lattice. In chapter 4, we shall expand on this, by showing that the

‘balanced equivalence relations’ we define there also form a lattice.

In section 2.4, we cover the concept of ‘multisets’, which are described in Girish and John

(2009), amongst other places. Although they are not widely used in mathematics, we shall

see in chapter 5 that multisets provide a very natural structure to describe the networks and

functions which we later define and which form the basis for this thesis. This justifies and

makes rigorous the comment in Golubitsky et al. (2005, remark 2.4(b)) to this effect. A

more traditional alternative would be to work with n–tuples in which an element may appear

several times. The disadvantage of n–tuples is that they impose an ordering on their entries;

a symmetry property then has to be satisfied to remove the complications introduced in this

way.

8



2 Fundamentals

Section 2.5 covers the well-known concept of differential equations: the material given here is

very standard, as given for example in Anosov and Arnold (1988) — this section exists largely

to ensure that the reader understands our use of notation, for which different standards exist.

In section 2.6, some more involved material appears — we deal with ‘bump functions’, which

are functions, smooth in all derivatives, but supported on sets of finite measure. We use

these functions to form a function which is equal to one given function in a certain ball,

equal to another given function at points which are at least a given distance from that

ball, and smooth in all derivatives everywhere. This construction will later be useful in our

perturbations of vector fields.

2.1 Sets and Functions

We begin with a few completely non-standard, but trivial, definitions, which will be useful

throughout this thesis.

Definition 2.1.1. In this thesis, we often use the symbol ∞ to denote limiting cases and

other relevant constructions; these constructions will be introduced individually. However,

since this often gives a piece of notation with a position which can feature either a natural

number or this symbol, it is useful to use N∞ to denote the set N Y t∞u. Note that this

use of the symbol ∞ is completely formal, and the set N∞ is not ascribed any algebraic

structure other than as an ordered set (n   ∞ for all n P N). In particular, constructions

such as n�∞ are never used.

9



2 Fundamentals

Definition 2.1.2. Given four sets, A,B,C,D where AX C � ∅, a combined function

f :

$'''&
'''%
AÑ B

C Ñ D

is a function from AY C to B YD such that f paq P B, f pcq P D for all a P A, c P C.

Given a function f : X Ñ Y , where f is a bijection, we denote the inverse of f by f�1,

as is usual. When f is not a bijection, it is common to use the same notation f�1 pyq to

denote the preimage of y under f , which is the set t x P X | f pxq � y u. We eschew this

notational collision, by making the following definition.

Definition 2.1.3. Given any function f : X Ñ Y , let f t�1u denote the set t x P X | f pxq � y u.

Remark 2.1.4. This definition allows us to refer to the preimage (as a set) even in the case

of bijections, and to be sure that f�1 pyq P X, provided f�1 exists.

2.2 Relations and Lattices

The term lattice is used here as in Davey and Priestley (1990, 2002), to mean a partially

ordered set X in which any two elements x, y P X have a unique join, denoted x _ y, and

meet, denoted x^ y.

A lattice X is complete if every subset Y � X has a unique greatest lower bound, or meet,

and a unique least upper bound, or join. We denote the meet of Y by
�
Y and its join by�

Y . In particular, any finite lattice is complete, and a complete lattice has a maximal and

minimal element.

10
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The dual of Theorem 2.16 from Davey and Priestley (1990) will be useful; we give this dual

here:

Theorem 2.2.1 (Davey and Priestley, 1990, Theorem 2.16). Let X be a non-empty partially

ordered set. Then the following properties are equivalent:

1. X is a complete lattice.

2.
�
Y exists for all Y � X.

3. X has a minimal element
�
X, and

�
Y exists for all Y � X with Y � ∅.

Definition 2.2.2. Given two equivalence relations � and � on a set S, � is a refinement

of � if x � y ùñ x � y for all x, y P S.

We define a partial order ¤ on the equivalence relations on a given set S by � ¤ � if � is

a refinement of �. Naturally, we use the symbol ¥ for the opposite order.

It should be clear that � is the minimal equivalence relation on any set S, and J is the

maximal relation, where the equivalence relation J is defined by letting x J y @x, y P S.

In fact, the set of equivalence relations on S is a complete lattice. The meet
�
Y of a set

Y of equivalence relations on S is their intersection when considered as subsets of S � S:

that is, x
�
Y y if x � y for all � P Y . The union of a set Y of equivalence relations may

not be a transitive relation, but the join
�
Y of Y is given by the transitive closure of this

union: x
�
Y y if there is a chain x � x0 �1 x1 �2 � � � �n xn � y with xi P S and �i P Y

for 1 ¤ i ¤ n.

Given any equivalence relation � on a set S, a set R is called a transversal of � if r1 � r2

for all r1, r2 P R, and for all s P S there is some r P R such that r � s.

11



2 Fundamentals

2.3 Groupoids

As in Brown (1987); Higgins (1971), and used in Golubitsky et al. (2005); Stewart, Golubitsky,

and Pivato (2003), we define an algebraic structure similar to a group, called a groupoid.

In contrast to groups, two elements of a groupoid need not have a product, although if

sufficient products are defined, group-like properties hold.

Definition 2.3.1. Let G be a set with a unary operation ��1 : GÑ G and a partial function

� : G � G Ñ G: that is, � is similar to a binary operation on G except that it is not

necessarily defined for all pairs of elements.

Suppose the following properties hold:

1. If a� b and b� c are defined, then a� b� c is unambiguously defined: that is, pa� bq� c �

a� pb� cq, and these expressions are defined.

Also, if either of pa� bq� c or a� pb� cq is defined, then so is the other, and these

expressions are equal.

2. a� a�1 is always defined, as is a�1
� a.

3. If a� b is defined, then a� b� b�1 � a and a�1
� a� b � b.

Then we call pG,�, ��1q a groupoid .

Groupoids naturally arise in a number of situations: for example, consider G as the set of

paths through some space, identified by homotopy; let � be the operation of concatenation.

Then a� b is only defined for a, b P G such that a finishes at the same point where b starts.

In this case a�1 is a path tracing the same route as a but in the other direction. More relevant

to the use of groupoids here is the example of a set of bijective functions between the sets

of a collection: let S be some collection of sets, and fi : si Ñ ti, where si, ti P S. Then

12



2 Fundamentals

f � t fi u forms a groupoid under composition of functions, with usual function inverse.

Note that the ‘product’ (composition) fifj is only defined where tj � si.

2.4 Multisets

We define ‘multisets’ as in Wildberger (2003) and Girish and John (2009). Although in-

frequently used in mathematics as a whole, multisets will be a useful and natural way of

describing the networks we later define. This approach was suggested in Golubitsky et al.

(2005): we will act on this suggestion to define the whole formalism in this thesis in terms

of multisets.

A multiset is, informally, a set-like collection of objects S where each object in S has a

natural-valued multiplicity, which can be considered to be the ‘number of times’ it appears

in the multiset. As suggested in Golubitsky et al. (2005, Remark 2.4(b)), multisets are very

natural objects to use in the theory of coupled-cell networks. We now give the important

definitions to formalise multisets — more details can be found in Wildberger (2003); Girish

and John (2009).

We use the notation Þx, x, y, zß to denote the multiset with elements x, y, z, where x has

multiplicity 2 and y, z each have multiplicity 1. In this way, although the order of rep-

resentation of a multiset S is ignored, the multiplicity of distinct elements in preserved:

Þx, x, y, zß � Þx, y, z, xß � Þx, y, z, zß. Effectively, a multiset S is a function εS from some

index set, indexS, to the ‘content set’, or support of S, suppS; without loss of generality,

we choose suppS such that εS is a surjection. Two multisets are considered equal if there

is a bijection ϕ : indexA Ñ indexB such that εBϕ � εA. We use the notation x P X to

mean x P suppX, and define the cardinality |X| of a multiset X to be equal to |indexX|.

13
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Let εS pxq denote the multiplicity of x in S: that is, εS pxq � |t i P indexS | εS piq � x u|.

When defining a multiset, we may enumerate the elements as above — or, given sets X, Y

and a function f : X Ñ Y , we may use the notation S � Þ f pxq | x P X ß, which defines

indexS � X, suppS � f pXq, and εS pxq � f pxq; that is, εS � f . Crucially, this gives a

multiset with the same cardinality as X, even if f is not injective.

Definition 2.4.1. If S, T are multisets such that suppS � suppT , and εS psq ¤ εT psq for

all s P S, we write S �� T ; if, in addition, |S| � λ, we may write S
λ
�� T . Notice that

with this definition, S �� T means that S contains ‘some of’ T , just as X � Y means X

contains ‘some of’ Y . If suppS � tsu, and εS psq � εT psq, we may write S PP T ; here we

say that S is a multiplet in T .

Definition 2.4.2. Let S be a multiset. Then the power set P pSq of S is defined in the

obvious way: P pSq � t A | A �� S u.

We now define the notion of a function of multisets: our definition differs slightly from that

given in, for example, Girish and John (2009); in fact, the definition given here is more

general. We shall require this generality in this thesis.

Definition 2.4.3. Let S, T be two multisets, and f : P pSq Ñ P pT q a function such that

if A �� B �� S then f pAq �� f pBq �� T . Then we consider f to be a function between A

and B, and write f : AÑ B. We can define a function f : S Ñ T by defining f pXq for all

X PP S, and letting f pY q �
�
XPPY f pXq: this sets f pY q � ∅ for many Y �� S, but gives

a well-defined value f pY q for all Y �� S.

Suppose f : S Ñ T is a function such that f pSq � T . Then we call f a multiset surjection,

by obvious extension from the set construction. Alternatively, suppose f : S Ñ T such that

14
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|f pAq| � |A| for all A �� S. Then we call f a multiset injection. If f is both a surjection

and an injection, we call it a bijection.

Remark 2.4.4. Suppose we take two multisets A,B with all multiplicities 1: that is, A and

B are sets, considered as multisets. Then each of the possible functions f : A Ñ B must

assign, to each Þaß PP A, some f pÞaßq � B. If each of these images also has multiplicity 1,

then f is a function A Ñ B as sets. Conversely, any function of sets f : A Ñ B must be

a function A Ñ B, where A,B are considered as multisets. So set functions are multiset

functions with all multiplicities 1.

Girish and John (2009) have another definition of a multiset function: they treat it as a

function of multiplets, t a PP A u Ñ t b PP B u. Our definition is more general, in that each

of these multiplet functions can be represented as a multiset function as defined above, but

although we allow a function which takes Þ1ß ÞÑ Þ10ß and Þ1, 1ß ÞÑ Þ10, 11ß, it is not a

multiset function in the sense of Girish and John (2009).

These multisets are intuitively somewhere between sets and tuples: like tuples, multiplicity

is preserved; like sets, order is disregarded. It is completely standard to represent vector

spaces by sets of tuples. In chapter 5, we shall see that this concept of vector space can be

extended to make what we call a ‘multispace’, which is a set of multisets which behaves in

a somewhat similar way to a vector space.

2.5 Differential Equations

As is standard (for example, see Anosov and Arnold (1988, section 1.2)), given a vector field

F : U Ñ V , the differential equation corresponding to F is the equation 9x � F pxq, where
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9x denotes the image of the standard tangent vector to the t–axis under the derivative of the

mapping t ÞÑ x. Due to the large number of perturbations we make, which we denote by

a mark above a variable name, in the manner of x̃, we shall generally use the alternative

notation dx
dt

in place of 9x. In this thesis, we only consider autonomous equations; that is, the

function F is independent of the time parameter t.

For our purposes, a solution of dx
dt
� F pxq is a differentiable map x : R Ñ U such that

dx
dt
ptq � F px ptqq for all t P R, where dx

dt
ptq �

�
d
dt
x
�
ptq denotes the derivative of x at t,

which is sometimes (e.g., Anosov and Arnold (1988)) denoted d
dt
x pτq

��
τ�t We may call a

solution of dx
dt
� F a trajectory of the vector field F : the same term is often used (as in

Anosov and Arnold (1988)) for the image of such a solution. If x is stationary (that is,

x ptq � x� P V for all t P R), we call x an equilibrium of F .

Given a vector field F , its Jacobian DF is the map (or matrix) Bf
Bx

: that is, DF � pai,jq,

where ai,j �
Bfi
Bxj

, for some co-ordinate mapping x � px1, . . . , xnq , y � py1, . . . , ynq , F �

pf1, . . . , fnq such that fk � ykF . We use the notation DF pxq to denote the evaluation of

this Jacobian at x, which is sometimes written DF |x .

2.5.1 Isolation, Transversality, and Hyperbolicity

We now introduce three properties of trajectories of differential equations which we shall

examine in more detail later.

Definition 2.5.1 (Isolation). Let F be any system of differential equations. An equilibrium

x� of F is isolated if there is some δ ¡ 0 such that t x P B px�, δq | F pxq � 0 u � tx�u.

We may specify the δ by using the term δ–isolated.
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Definition 2.5.2 (Transversality). Let F be a system of differential equations with an equi-

librium x�. Then x� is transverse in F if detDF px�q � 0.

Definition 2.5.3 (Hyperbolicity). Let F be a system of differential equations with an equi-

librium x�. Then x� is hyperbolic in F if DF px�q has no purely imaginary eigenvalues.

(Here, 0 is considered purely imaginary, as it has zero real part.)

The property of hyperbolicity extends to periodic solutions of differential equations as follows.

Definition 2.5.4 (Hyperbolicity). Let F be a system of differential equations with a periodic

solution x. Consider a region of a hyperplane Π through x p0q normal to 9x p0q such that this

region contains x p0q. Define a map f : Π Ñ Π which takes each point y0 P Π to the next

point of intersection between Π and a trajectory y with y p0q � y0. Then x is a hyperbolic

trajectory of F if y is a hyperbolic equilibrium of f .

2.6 Bump Functions, Norms, and Smoothing

As mentioned above, much of this thesis rests on the concept of perturbing a trajectory

of a vector field by a small amount. This motivates several definitions, which we give in

this section. Firstly, it is useful to have a simple notation which we introduce for common

norms on vector spaces of functions. We also introduce the idea of an ε–perturbation of a

function, which has distance less than ε from F , and a δ–local perturbation, which is equal

to F outside some ball of radius δ. Secondly, we wish to be able to construct a smooth

function which is non-zero on a set of finite measure; we give such a construction. Thirdly,

we state and prove some simple facts which result in being able to ‘patch together’ two

smooth functions f, g to create a function h which is equal to f in some places and equal

to g in others, but smooth everywhere.
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We now define our notation for common norms on vector spaces of functions.

Given two normed vector spaces X, Y with the norm of Y denoted by }�}, and a function

f : X Ñ Y , let |f | denote the supremum norm of f , |f | � supxPX }f pxq}. Let }f} �

max t|f | , |Df |u, the C1–norm of f .

If F is a set of functions, let |F | � supfPF |f | and }F } � supfPF }f}.

Definition 2.6.1. Given a function f : X Ñ Y and ε ¡ 0:

• g : X Ñ Y is an ε–perturbation of f if }F �G}   ε.

• g : X Ñ Y is a perturbation of f which is supported on Z � X if g pxq � f pxq for

all x R Z.

• g : X Ñ Y is a perturbation of f which is δ–local to x P X if it is supported on

B px, δq as a perturbation of f .

Remark 2.6.2. A trajectory of a differential equation is a function x : R Ñ U , and so we

may consider perturbations of trajectories.

2.6.1 Bump Functions and Smoothing

Definition 2.6.3. Let Bump : R Ñ R be defined by Bump pxq � exp
�

x2

|x|�1

	
for |x|   1

and 0 elsewhere. This function is C∞–smooth (although clearly not analytic), is 1 at 0, and

is 0 in all derivatives for |x| ¥ 1.

Let MBump � sup
 

d
dx

Bump pxq
�� x P R (

� 2.156 . . .   2.5.

Given an interval T � ra, bs and t P T , define BumptPT P C
∞ pRÑ r0, 1sq by BumptPT pxq �

Bump
�
x�t
d

�
, where d � min tt� a, b� tu. This function is also C∞–smooth (but not ana-

lytic), and has the property that BumptPT ptq � 1, but BumptPT pBT q is 0 in all derivatives,
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and BumptPT puq � 0 for all u R T .

Theorem 2.6.4 (Smoothing Theorem). Given two spaces X, Y , a point x� P X, two radii

R ¡ r ¡ 0, and any ε ¡ 0, there is some δ ¡ 0 such that for any two smooth functions

f, g : X Ñ Y such that }f � g}   δ, there exists some function h : X Ñ Y such that:

1. h pxq � g pxq for x P B px�, rq;

2. h pxq � f pxq for all x R B px�, Rq;

3. h is a smooth function;

4. }h� f} , }h� g}   ε.

We call this δ a function bound for x�, R, r, ε.

Proof. Let dr,R px, yq �
maxpdpx,yq�r,0q

R�r
: this function ranges from 0 when x and y are closer

than r to 1 when x and y are distance R apart. Now let H : X Ñ r0, 1s be defined by

H pxq � Bump pdr,R px
�, xqq. Then H is a positive bump function on X which is equal to

1 on B px�, rq and supported on B px�, Rq, with |detDH| ¤M �
MBump

R�r
. Let K �M � 1,

and define δ � ε
K

.

For smooth functions f, g : X Ñ Y with }f � g}   δ, let h � f � pg � fqH. Clearly,

property 1 and property 2 hold. Also, h is smooth by the algebra of smooth functions, so

property 3 holds.
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Now |h� f | � H |g � f |   |g � f |   δ, and:

|detD rh� f s| � |det pDh�Dfq|

� |det pDf �DH � pg � fq �H � pDg �Dfq �Dfq|

� |det pDH � pg � fq �H � pDg �Dfqq|

¤ |detDH| � |g � f | �H � |det pDg �Dfq|

  δ |detDH| � δH   δ pM � 1q � δK � ε

So property 4 holds for f . It holds for g by a symmetrical argument.

Theorem 2.6.5 (Bumping Theorem). Given a function f : X Ñ Y , some point x� P X,

and any R, ε ¡ 0, there exists a function f̂ : X Ñ Y such that:

1. f̂ px�q � f px�q.

2. f̂ pxq � f pxq for all x R B px�, Rq;

3. f̂ � f is a smooth function;

4.
���f̂ � f

���   ε;

Proof. Take r � R{2, and let y P Y be some non-zero vector with }y}   δ for δ as in

theorem 2.6.4. Let g be defined by g pxq � f pxq � y for all x P X, then }f � g}   δ.

Hence we may apply theorem 2.6.4 to get a function h which has the properties desired in

the function f̂ .

Remark 2.6.6. If F is some system of differential equations with an equilibrium x�, and

ε, r ¡ 0 are given, we may apply theorem 2.6.5 to F to obtain an ε–perturbation F̃ of F

which is δ–local to x� such that x� is not an equilibrium of F̃ .
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3 Coupled–Cell Networks

This thesis brings together two major concepts: differential equations, and ‘balanced equiva-

lence relations.’ As we shall see in chapter 4, this kind of relation is defined on ‘coupled-cell

networks’; we define these networks here. As such this chapter is fundamental to the work

in this thesis. The definitions in this chapter are largely derived from Stewart et al. (2003);

Golubitsky et al. (2005); Dias and Stewart (2004); Stewart and Parker (December 2007,

2008, Preprint); Wilson (1985), although we depart slightly from previous treatments of

these networks by using multisets to describe edges of networks. However, we introduce

these ‘coupled cell networks’ in a manner that is compatible with the one that is becoming

standard, for example, in Aldis (2008); Golubitsky and Stewart (2006).

In section 3.2, we also provide results on ‘trees,’ which are connected networks with no

undirected cycles: as we shall see in chapter 5, certain trees are the natural network-theoretic

way to determine which values in a differential equation can affect which others. We also

describe ‘restrictions’ and ‘limits’ of trees. In section 3.3, we define ‘bunching’, which is a

natural operation on trees, which helps us to see which trees are equivalent (that is, have

equivalent differential equations). This sense of ‘equivalence’ motivates us to turn the class

of trees into a category in a particular way: most of the details are omitted here, but enough

information is provided to demonstrate that this would be an interesting direction for further
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study.

3.1 Network Terminology

We now define the concept of a ‘coupled-cell network’, on which all of the material in this

thesis is based. We define some simple properties of networks, and define what it means for

a relation to be an equivalence relation on a network, or across two networks; we also give

analogues of these definitions for more general relations, which will be useful in chapter 10,

since the ‘phase relations’ we deal with there are, in general, not equivalence relations.

A (coupled cell) network N � pC,E,�q is a set of cells C, a multiset of edges E, and an

equivalence relation �, of a certain kind described below. Each edge (or ‘arrow’) is of the

form e � pc, d, tq, where c and d are cells, called the tail and head of e respectively, and t is

some type marker (of an arbitrary form). Given an edge e, let Hpeq denote its head, T peq

its tail, and [e] its type marker. We may denote the edge pc, d, tq by d Ñ
t
c, and let d

w
Ñ
t
c

denote a multiset of identical edges:
���d w
Ñ
t
c
��� � w, supp

�
d

w
Ñ
t
c
	
�
!
dÑ

t
c
)

.

In previous work (including Aldis (2005)), multiplicities have sometimes been taken from

arbitrary groups. In general, we do not allow this in this thesis, which simplifies the nature

of the edge sets considerably. We revisit this simplification in chapter 11.

The relation � � �C Y �E, where �C is a (chosen) equivalence relation on C, and �E is

the equivalence relation on E given by e �E f if [e] � [f]. For a cell c or edge e, let rcs or

res denote its equivalence class under �; call this class the cell type of c or edge type of e.

For any network N , let CpN q and EpN q denote the cell and edge sets of N , respectively;

let �N denote the network’s equivalence relation. If c, d P CpN q then let Epc, dq denote the
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multiset of arrows from c to d; that is, Epc, dq � Þ e P EpN q | Hpeq � d, T peq � c ß.

When we draw networks, we use the same symbol (circle, square, etc.) for cells c, d where

c �C d, and the same style of arrow (dotted, dashed, etc.) for edges e, f such that e �E f .

An example is shown in figure 3.1.

1 2

5
4

3

b
c

g

d

h

e f

a

4
1

2

2

2

6

3
2

Figure 3.1: An example network, with 5 cells, C � t1, 2, 3, 4, 5u and 8 edges, E �
ta, b, c, d, e, f, g, hu. As shown by the shapes of cells and edges, 1 �C 3, 2 �C 5;
b �E c �E e �E g �E h, also d �E f . Small numbers show edge multiplicities.

Definition 3.1.1. A network with only one cell type and one arrow type, as in figure 3.2, is

called a homogeneous network.

1

23

4

5 6

a

be

d

c

f

g

h

Figure 3.2: A homogenous network with 6 cells and 8 edges.

Definition 3.1.2. Networks with a countable or finite number of cells and edges are called

countable or finite networks, respectively. Networks are called locally countable or locally
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finite if they have only a countable or finite number of edges meeting any given cell, that

is, for all cells c P CpN q, the set t e P EpN q | Hpeq � c or T peq � c u is countable or finite,

respectively. (We take the term “countable” to include “finite”; that is, all finite numbers

are countable).

Definition 3.1.3. Given two networks N � pC,E,�N q , M � pD,F,�Mq, a network

homomorphism ϕ : N ÑM is a combined function ϕ :

$'''&
'''%
C Ñ D

E Ñ F

, such that:

1. ϕ preserves the cell and edge equivalence relations: if x �N y for x, y P C Y E, then

ϕ pxq �M ϕ pyq.

2. ϕ preserves network structure: if e is an edge in N , then Hpϕ peqq � ϕ pHpeqq and

T pϕ peqq � ϕ pT peqq.

A network isomorphism is a bijective network homomorphism. It should be clear that the

inverse of a network isomorphism is also a network isomorphism: in particular, the isomor-

phisms are the homomorphisms with homomorphism inverses.

Definition 3.1.4. Given a network N , let � denote a pair of relations, one on the cells of

N , the other on its edges. We call this kind of relation pair a relation on N . For example,

�N is a relation on N . If, in addition, � is an equivalence relation which refines �N , then

we call � an equivalence relation on N .

Definition 3.1.5. Given two networks N ,M, let � denote a pair of relations, one on the

disjoint union of the cell sets of N andM, the other on the disjoint union of their edge sets.

We call this kind of relation pair a relation across N and M.

If � is an equivalence relation such that the restriction of � to N is an equivalence relation

on N , and the restriction of � to M is an equivalence relation on M, then we call � an
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equivalence relation across M and N .

Definition 3.1.6. Let � be an equivalence relation across two networks M,N . We say

N is isomorphic to M with respect to � if there is an isomorphism F : M �
Ñ N which

preserves equivalence classes under � — that is, x � F pxq for cells and edges x in M. We

denote this by M �� N , or just M � N .

Similarly, if ; is any relation across two networks M,N , we say M relates to N , and

write M ; N , if there is an isomorphism F : M Ñ N such that x ; F pxq for all

x P C pMq Y E pMq.

3.2 Trees

A particular kind of coupled-cell network is the ‘tree’, a term which here means a rooted

directed tree in the usual sense: such a tree has some unique root cell and a unique directed

path from any cell to this root.

Trees will be very important in this thesis, as they are the natural way to track which values

in a differential equation can affect which others. In particular, although the networks we

define from the differential equation application will be finite, in the general case the trees

we deal with may be infinite. In order to make intelligible statements about these infinite

trees, we show that an infinite tree is the limit, in a well-defined way, of a sequence of finite

trees. We may then reason about the finite trees, and show that our results carry ‘upwards’

to the infinite limiting tree of any convergent sequence.

We start by defining some basic relations on the cells of a network.

Definition 3.2.1. We define the relation Ñ on the cells of a network by c Ñ d if there is
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an edge
�
c Ñ
t
d
	
P E pN q for some edge type t. We write c á d (or d â c) if there is a

sequence of cells c � c0, c1, . . . , cn � d such that for each i, we have that ci Ñ ci�1. Such

a sequence is called a path from c to d.

Definition 3.2.2. Two cells c, d in a network are path-connected if c á d and c â d: in

this case we write c é d. A path-connected network is a network whose cells are pairwise

path-connected.

Definition 3.2.3. Two cells c, d in a network are connected if there is a sequence of cells

c � c0, c1, . . . , cn � d such that for each i there is an edge ei with ci, ci�1 as its ends. In

this case, we write cú d. Note that, unlike in the definition of path-connectedness, there

is no requirement for the edges used in connectedness to ‘point in the same direction’: the

edge ei can be ci Ñ ci�1 or ci Ð ci�1, independently of whether the edge ej is cj Ñ cj�1

or cj Ð cj�1. In this way, connectedness in our network sense is a weaker property than

path-connectedness.

A connected network is a network whose cells are pairwise connected.

Definition 3.2.4. A component of a network N is the network M with cell set equal to

some subset C of C pN q and edge set
�
c,dPC E pc, dq.

A component M of N is called a connected component if C pMq is an equivalence class of

ú on C pN q. Similarly, M is a path-connected component if C pMq is a é–equivalence

class of C pN q. If M is a path-connected component of N such that there are no cells

c P C pMq, d P C pN qzC pMq where dÑ c, then we callM an upstream component of N .

Definition 3.2.5. We define a metric d on the cells of a network. If c, d are connected, then

d pc, dq is the smallest n such that c � c0, c1, . . . , cn � d is a sequence of cells connecting c

and d. If c, d are not connected, d pc, dq �∞.
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Definition 3.2.6. A tree is a connected network which has some cell c0, called the root,

such that:

1. There is no edge with c0 as its tail.

2. Given any other cell c � c0, there is a unique edge with c as its tail.

A leaf of a tree is a cell c such that there is no edge with c as its head. The generation of

a cell c in a tree is the distance d pc, c0q. The depth of a tree T , depth pT q, is the maximal

generation of cells in the tree. If there are cells in T at generation n for all n P N, then we

define depth pT q �∞. See figure 3.3.

1

3

7 8 9

2

6

5

11

10

4

cba

e f g h i

j

d

Figure 3.3: A tree with root 1 and leaves 6, 7, 8, 9, 11. Cells 2, 3, 4, 5 are at generation 1,
cells 6, 7, 8, 9, 10 at generation 2 and 11 is at generation 3; the depth of this tree
is 3.

Definition 3.2.7. Given a tree T containing some cell c, the subtree rooted at c, Tpcq, is

the tree containing all cells d of T which have a directed path from d to c in T , and all the

edges used in such paths. See figure 3.4.
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8 9

4

g h

Figure 3.4: The subtree of figure 3.3 rooted at cell 4.

3.2.1 Operations on Trees

Here we give two straightforward definitions. Restriction of a tree to a given depth is the

procedure by which we make infinite trees into finite ones. The second definition is the ‘join’

of two trees, which involves ‘gluing’ the root of one tree to a leaf of another.

Definition 3.2.8. The restriction of a tree T to depth n, denoted T |n, is the tree with cells

c from T where the generation of c is at most n, and all edges pc, d, tq from T where both

c and d are of generation at most n. See figure 3.5. The cell and edge equivalence relations

on T |n are precisely those on T , restricted to the cells and edges of T |n. Obviously, the

depth of T |n is at most n: specifically, it is min tn, depth pT qu, and where the depth of T

is less than or equal to n, we have T |n � T .

1
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1
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4
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e f g h i

d

Figure 3.5: The restriction of figure 3.3 to depths 1 (left) and 2 (right).

Lemma 3.2.9. For locally finite trees T , the tree T |n is finite for all n.

Proof. The proof is routine, and omitted.
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We now define the ‘join’ of two trees: informally, we shall ensure that the cell sets of the

trees are disjoint, and then identify the root of one tree with a leaf in the other, while keeping

all edges ‘the same’. The following definition makes this precise.

Definition 3.2.10. Given two trees, T � pC,Eq with a leaf c and U � pD,F q with root

d, the join of U to T at c is a tree with cell set given by the union C� Y D�, where

C� � C � t1u � t pc1, 1q | c1 P C u, D� � pDz tduq � t2u � t pd1, 2q | d1 P Dz tdu u, and

edge set E� Y F�, where

E� � Þ pc1, 1q Ñ
t
pc2, 1q

��� c1 Ñ
t
c2 P E ß

and

F� � Þ pd1, 2q Ñ
t
pd2, 2q

��� d1 Ñ
t
d2 P F and d1 � d ß Y Þ pc, 1q Ñ

t
pd2, 2q

��� dÑ
t
d2 P F ß

(Here, as is usual, notation such as pc2, 1q represents the Cartesian pair taken from pC YDq�

t1, 2u.)

See figure 3.6 for an example. Cell and edge equivalences are, by default, defined as the

union of those of T and U , with the additional condition that all cells which are equivalent

to d in U become equivalent to all cells which are equivalent to c in T . The following remark

describes cases where a more particular equivalence relation makes sense.

Remark 3.2.11. With the ‘default equivalences’ described in the definition of the join of

trees T ,U at c, d respectively, no cell in T which is not equivalent to c becomes equivalent

to a cell in U , and no cell in U which is not equivalent to d becomes equivalent to any cell

in T . However, there are cases when the cell and edge equivalence relations on T and U
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3 Coupled–Cell Networks

are naturally considered as the restrictions of a single pair of equivalence relations �C ,�E

on the unions of the cells and edges of these trees; for example, where the trees are both

derived from some underlying network, as we shall see in chapter 4. In that case, we may

take the restrictions of the relations �C ,�E to the join of T and U as the equivalences of

this new tree; again, we define pc1, 1q �C pd
1, 2q whenever c1 �C c and d �C d

1. Usually, we

shall join cells c, d where c �C d, making this step unnecessary.

1
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6

5
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4

cba

e f g

d

1
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7 10
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6
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8

4,9

cba

e f h i g

d

11

10

9

h i

11

Figure 3.6: Trees T (top left) and U (top right) and the join of T to U at 4. Notice that some
cells in T are equivalent to some in U , as shown by shapes here (for example,
2 �C 11), and in particular that 4 �C 9.

Given two pairs of trees, with homomorphisms between them, we may define a homomorphism

from the join of one pair of trees to the other in the obvious way: refer to Aldis (2008) for

the details.
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3 Coupled–Cell Networks

3.2.2 Sequences of Trees

The previous section dealt with the restriction of trees to given depths; this procedure made

finite trees from infinite ones. We now consider sequences of trees, and their limits: this

process in general takes finite trees into infinite ones. We note that this procedure is in a

sense the inverse of restriction: given a tree T , its restriction to depth n tends to T as n

tends to infinity. Proofs of the results presented here are given in Aldis (2008).

Definition 3.2.12. Given a sequence of trees pTiq with a sequence of isomorphisms fi :

Ti|ni

�
Ñ Ti�1|ni

for some sequence ni Ñ∞, we call Ti a convergent sequence. We call pfiq

the convergence isomorphism of pTiq.

Given a convergent sequence of trees pTiq, the direct limit T∞ of pTiq is constructed by taking

disjoint unions of cell and edge sets of the Ti, and then identifying all cells and edges mapped

to each other by any of the individual isomorphisms fi from the convergence isomorphism.

Remark 3.2.13. This identification gives a well-defined injection f∞
i : Ti ãÑ T∞ for all i;

further, these injections cause this diagram to commute for all i:

Ti
fi //

f∞i   A
AA

AA
AA

A Ti�1

f∞i�1||zz
zz

zz
zz

T∞

Definition 3.2.14. The direct limit of a sequence of functions pFi : Ti Ñ Uiq is defined

if, for all i greater than some sufficiently large n P N, Fi commutes with the convergence
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3 Coupled–Cell Networks

isomorphisms pfiq , pgiq of pTiq and pUiq, as in the following diagram:

Ti
Fi //

fi
��

Ui
gi
��

Ti�1
Fi�1 // Ui�1

This direct limit F∞ is then defined by:

Ti
Fi //

� _

f∞i
��

Ui� _
g∞i
��

T∞
F∞ // U∞

where i ¡ n.

Lemma 3.2.15. This limit is well-defined.

Proof. Consider this diagram:

Ti
Fi //

� _

f∞i
��

fi

��

Ui_�
g∞i
��

gi

��

T∞
F∞ // U∞

Ti�1

� ?

f∞i�1

OO

Fi�1

// Ui�1

?�

g∞i�1

OO

Since the outer arrows commute, the F∞ defined by the upper square (from Fi) is the same

as that defined by the lower square (from Fi�1). Induction shows that the same F∞ is defined

for any choice of i.

Lemma 3.2.16. If F : T Ñ U is a homomorphism of infinite trees, then each restriction

F
��T |n : T |n Ñ U |n is also a homomorphism. If F is an isomorphism, so is each F

��T |n .
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3 Coupled–Cell Networks

Further, if � is an equivalence relation across T and U which is preserved by F , then each

F
��T |n preserves the restriction of � to T |n , U |n .

Conversely, if pFi : Ti Ñ Uiq is a sequence of tree homomorphisms for convergent sequences

of trees, then F∞ is also a homomorphism, F∞ : T∞ Ñ U∞. If the Fi are isomorphisms,

then so is F∞. If � is an equivalence relation across T∞ and U∞ such that Fi respects �

for all i, then so does F∞.

Proof. Given in Aldis (2008).

Lemma 3.2.17. For any tree T , T � limnÑ∞ T |n .

Proof. Given in Aldis (2008).

3.3 Bunching

In systems modelled by the networks we are defining here, we consider any set of arrows

of the same type between the same cells with the same total multiplicity to be equivalent.

The use of multisets for edge sets enforces this choice. More interestingly, identical cells

with identical inputs will behave identically, and so they may be considered as ‘one cell’ (or,

multiple copies of the same cell). In effect, any output arrows from one of the identically-

behaving cells can be transferred to the other without affecting the behaviour of the network;

transferring all output arrows from some cell removes the effect of that cell on the network:

this cell can then be removed. To inspect the value of the removed cell, we may take the

value of an equivalent cell that is left in the network. Aldis (2008) formalises this process on

trees, resulting in the definition of a ‘bunched tree’, T {{�.

33



3 Coupled–Cell Networks

For the next set of definitions, we shall let T be a finite tree, and � an equivalence relation

on T . Notice that bunching a tree will not change its depth (we will prove this statement as

we proceed), and in particular, trees of depth 0 (consisting of a single cell) are unchanged

by bunching.

Definition 3.3.1. With T ,� as above, define a relation 9� on E pT q by e 9� f where either

e � f , or all of the following: e � f , c � T peq � T pfq � d, and the subtrees rooted at

c, d are isomorphic with respect to � after being bunched by �.

Lemma 3.3.2. This relation 9� is well-defined.

Proof. The apparent self-reliance is dealt with by descending induction. Let T be a tree

of depth n, and let all bunchings of trees of depth less than n by equivalence relations be

well-defined. Then for any two edges e, f , their tails are two non-root nodes c, d. The depth

of the subtrees rooted at c and d must be less than n (recall that T is finite), and so the

bunched trees rooted at c and d are well-defined by the inductive hypothesis. Thus we can

determine whether these bunched trees are isomorphic with respect to �.

Definition 3.3.3. Let T ,�, 9� be as above. Define a third relation, p�, between cells and

edges: c p� d if c � d or c and d are at the tail of edges e and f respectively such that

e p� f ; e p� f if e 9� f and the heads of e and f are equivalent under p�.

Lemma 3.3.4. This relation p� is well-defined.

Proof. This proof will use ascending induction on the generation of cells, and hence only

work for finite trees. (Recall that T is assumed to be finite, so this isn’t a problem.) We will

further prove inductively that if c p� d then c and d are at the same generation.
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3 Coupled–Cell Networks

Firstly, notice that the root of T cannot be equivalent to any other cell under p�, since it is

not at the tail of any edge. Now suppose that p� is defined for cells and edges of generation

at most m, and no two cells of different generations at most m are equivalent.

Let c, d be non-root cells at generation at most m � 1. Then they are at the tails of some

unique edges e, f respectively. The relation 9� is already defined (on edges), and so it only

remains to determine whether the heads of e, f are equivalent. But these heads are cells of

generation at most m; thus the relation p� is sufficiently defined to decide this question.

By induction, p� is well-defined on all cells (and edges) of T .

Definition 3.3.5. With T ,� as above, we can now define the bunched tree T {{� to be the

usual tree quotient T {p� � pC pT q{p�, E pT q{p�q.
We also extend this definition to infinite trees, by letting T {{� � limnÑ∞ pT |n {{�q. Aldis

(2005) shows that this is well-defined.

Note that for trees T ,U with integer edge multiplicities, as allowed in this thesis, T {{� ��

U{{� ðñ T �� U . We continue to refer to bunched trees where the results are straight-

forward, as they are useful in the more general setting, but we will not examine this use in

detail here.

The following results are proved in Aldis (2005).

Lemma 3.3.6. Let T be a tree and � an equivalence relation on T . Let c be a cell of T ,

corresponding to a cell bunch c� in T {{�. Then Tpcq{{� �� pT {{�qpc�q.

Proposition 3.3.7. If T and U are two trees, and � ¤ � are equivalence relations across

T and U such that T is equivalent to U with respect to �, then T is also equivalent to U

with respect to �. That is, T {{� �� U{{� ùñ T {{� �� U{{�.

35



3 Coupled–Cell Networks

Lemma 3.3.8. If � is an equivalence relation on a tree T , then pT {{�q|n � T |n {{�.

Lemma 3.3.9. Let T ,U be two trees, with some equivalence relation � across them. Let

c� be a cell bunch which is a leaf in T {{� — that is, all c P c� are leaves. Let J be the

join of U to T at each c P c�. Then J {{� is (isomorphic to) the join of U{{� to T {{� at

c�, considering T {{� as a tree in its own right, as usual.

3.4 A Category–Theoretic Treatment

As a direction for future research, consider a category of trees based on the ‘bunched iso-

morphisms’ we have seen in this chapter. There is already a formalism of ‘the category of

trees’, Tree: see, for example Snydal (1999). In this treatment, the objects of Tree are

trees, and there is a morphism from tree t to u when u is a ‘refinement’ of t: that is, we can

pass from t to u by a succession of moves, each of which either shrinks an edge or replaces

a vertex by an edge. These moves are not relevant to our use of trees: our treatment leads

us to consider instead the category Bunched Tree, which again has trees as objects, but

has a morphism from t to u if u is obtained from t by the bunching procedure.

Further study should be able to link this category to the ‘natural behaviour’ we examine in

the remainder of this thesis.
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4 The Lattice of Balanced Equivalence

Relations

In the previous chapter, we described coupled-cell networks, which are a prerequisite for

the explanation of balanced equivalence relations. In this chapter, we make the definition of

these relations. The later chapters of this thesis will show that balanced equivalence relations

are the relations of ‘rigid patterns of synchrony’, which is a useful property of solutions of

differential equations.

In order to define balanced equivalence relations, we use ‘input trees’ of cells of networks,

which we also define. In contrast to previous work, but in common with the previous chapter,

we shall make extensive use of multisets in our definitions. Additionally, several results make

use of the infinite limit constructions of the previous chapter.

Worthy of particular interest is section 4.1.3, which sets out constructions for determining

‘when and where’ relations are not balanced — that is, under what conditions and at which

cells of the network. This work expands in a specific and useful way on a similar construction

presented in Stewart and Parker (Preprint).

Section 4.2 is more interesting still: in it we prove that the balanced equivalence relations on
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4 The Lattice of Balanced Equivalence Relations

a given network form a lattice under the partial order given by refinement. This result is more

general, and its proof more elementary, than the similar result given by Stewart (2007); it has

previously appeared in Aldis (2008), but was not included for examination in Aldis (2005).

After this, we touch very briefly on an idea for further study, which would aim to determine

more fully the structure of the lattice of balanced equivalence relations on a network.

Finally, section 4.3.1 introduces a new kind of relation, the ‘forward relation’, which is the

natural set-theoretic framework in which to study the ‘phase relations’ of chapter 10. These

‘forward relations’ may also be balanced, in their own way: we define this, and see that its

definition is compatible with that of balanced equivalence relations; we note that the similarity

in definitions directly allows us to show that there is some maximal balanced forward relation,

and to give its structure.

4.1 Input Trees and Balanced Equivalence Relations

We now define “balanced equivalence relations” on a network N in terms of certain trees,

derived from the structure of N , which we call “input trees”. We then consider the sets of

cells which summarise the places where a given equivalence relation ‘fails to be balanced’:

this is based on Stewart and Parker (Preprint), but introduces the new idea of the ‘duplicate

set’.

In contrast to previous work, we consider relations other than equivalence relations and define

what it means for these to be ‘balanced’.
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4 The Lattice of Balanced Equivalence Relations

4.1.1 Input Sets and Input Trees

In this section, we define the input tree of a cell, in much the same way as Aldis (2005).

However, in contrast to the approach there, we use multisets throughout: we show that this

new definition is equivalent to the old one. We then define n–th input trees for any n, as

before, and the infinite input tree of any cell. We define a relation on cells, n–th input tree

equivalence, for any n P N∞. This material will allow the definition of balanced equivalence

relations in the next section.

Definition 4.1.1. The input set of a cell c in a network N is the multiset of edges of the

form dÑ c. The input tree of c is a network I pcq � pCc, Ecq, with cell set

Cc � tcu Y
!
pd, eq

��� e � �
d

w
Ñ
t
c
	
PP E pN q

)

and edge set

Ec � Þ pd, eq Ñ
t
c
��� e � �

dÑ
t
c
	
P E pN q ß

This I pcq is clearly a tree of depth 1 with root c (unless c has no inputs, in which case it

is a tree of depth 0). Cell and edge types are preserved: we extend �C and �E such that

pd, eq �C d and
�
pd, eq Ñ

t
c
	
�E

�
dÑ

t
c
	
� e, and use the appropriate restrictions of these

relations as cell and edge equivalences on the input set of c.

This definition is slightly different from the one given in Aldis (2008) and other places, which

does not use multisets explicitly. However, the two definitions are compatible in the sense

that the identifying marks in Aldis (2008) exist to create a multiset: let Ẽc denote the set

Ec as defined in previous work, and define a function f from Ẽc to the multiset Ec defined

above: f ppd, eq , c, t, iq � pd, eq Ñ
t
c. Then this f is a multiset bijection: the image of f is
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4 The Lattice of Balanced Equivalence Relations

Ec as above, and the number of edges in Ẽc mapped to the same item e1 � pd, eq Ñ
t
c of

the multiset Ec is the same as the multiplicity εEc pe1q.

Definition 4.1.2. Given a cell c in a network N , we inductively define the n–th input tree

of c, denoted In pcq so that each In pcq has root c. The first input tree of c, I1 pcq � I pcq,

is the input tree of c. The pn� 1q–th input tree of c has certain leaves at depth n � 1.

Each such leaf d is associated with a cell dN in N . Join the input set of dN to In�1 pcq at

d. Having joined all of these input sets, the result is the n–th input tree In pcq. We define

I0 pcq to be the tree consisting only of the cell c, with no edges.

The infinite input tree, I∞ pcq, is the direct limit of the input trees In pcq. This may or may

not be an infinite network, even for finite networks N — although if N is finite with no

directed cycle, I∞ is finite for all cells c of N . Also, if N is locally finite, I∞ is also locally

finite for all cells c P N .

Lemma 4.1.3. For cells c from a locally finite network, the n–th input tree of c is finite for

any finite n. Further, the infinite input tree of such a cell c is countable: that is, it has a

countable number of cells and edges. (Recall that our use of ‘countable’ includes ‘finite’.)

Proof. Routine, and omitted.

Definition 4.1.4. Given an equivalence relation � on a network N , we define the relation

of n–th input tree equivalence under � between cells of N , denoted c �n
� d (for n P

N Y t∞u), by c �n
� d whenever the n–th input trees of c and d are equivalent under �:

In pcq {{� �� In pdq {{�. (Recall that In pcq {{� �� In pdq {{� ðñ In pcq � In pdq for

the natural-valued multiplicities we consider here.)

For brevity and clarity, we denote �n
�N

by �n
N .
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Remark 4.1.5. Since adding extra generations to two trees can only make them more

different, it is clear that if m ¥ n then �m
� ¤ �n

�.

Definition 4.1.6. Given a sequence of input tree homomorphisms between the input trees

of cells c and d, we now define its limit. Let
�
F
pnq
c,d

	
be a sequence of homomorphisms

F
pnq
c,d : In pcq Ñ In pdq. We define F

p∞q
c,d � limnÑ∞ F

pnq
c,d .

Count, that is, uniquely enumerate from 1, the cells in I∞ pcq in increasing order of gen-

eration, with cells at the same generation enumerated in arbitrary order. (This is possible

because the input tree is countable, by lemma 4.1.3.) Let cj denote the cell enumerated by

j P N. For each j, we define a strictly increasing sequence n
pjq
i of natural numbers such that

the subsequence pfi,jq �

�
F
pnpjqi q
c,d



of

�
F
pnq
c,d

	
is constant on cells ck for k ¤ j. We then

let di,j � F
pnpjqi q
c,d pcjq. This is constant for all i, so we can define F

p∞q
c,d pcjq � di,j.

The details of this process are given in Aldis (2005, 2008), and not repeated here.

4.1.2 Balanced Equivalence Relations

We now define what it means for a relation to be balanced, in the standard way, as introduced

in Golubitsky and Stewart (2006) and used throughout the field: for example, Golubitsky,

Stewart, and Nicol (2004); Golubitsky et al. (2005); Stewart et al. (2003); Stewart and

Parker (December 2007). These uses of balance have also described the groupoid of input

tree isomorphisms: given cells c, d of a network, with c �1
N d, an input tree isomorphism

from c to d is an isomorphism of the input trees I pcq and I pdq which respects �N . The

groupoid of all such input tree isomorphisms for c, d has previously been denoted B pc, dq:

here we introduce the new notation Iso1 pc, dq; taking bunching into account, we define the

similar structure Iso1
N pc, dq.
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Definition 4.1.7. Let � be an equivalence relation on a network N ; recall that this implies

that � ¤ �N . Then we call � a balanced equivalence relation if:

1. c � d for cells c and d only where the bunched input sets of c and d are equivalent

under �. That is, � ¤ �1
� on cells.

2. e � f for edges e and f only where their tails are equivalent: e � f ùñ T peq �

T pfq. In general, we will define � on cells, and let e � f precisely when e �E f and

T peq � T pfq. Clearly, this produces the maximal � on edges of a network for a given

� on its cells.

Figure 4.1 shows an example of a balanced equivalence relation.

1 2

3 4

1

1

1

1

2

1
1

b

a

c de
f

g

Figure 4.1: A balanced equivalence relation on a network: equivalence classes under the
balanced relation are represented by colours.

Definition 4.1.8. Let N be a network, and c, d P C pN q. Then Iso pI pcq , I pdqq is

the groupoid of isomorphisms I pcq �NÑ I pdq of the input trees of those cells. Define

TreeIso pc, dq to be this group of isomorphisms. For n P N∞, let Ison pc, dq denote the

group of n–th input tree isomorphisms, Iso pIn pcq , In pdqq.

Where c � d, this group Ison pc, cq is denoted Autn pcq.

We also give a version of this definition which accounts for bunching: as remarked previously,

this will not alter the algebraic structure here, but is the more general formulation.
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Definition 4.1.9. LetN be a network, and c, d P C pN q; let� ¤ �N . Then Iso� pI pcq , I pdqq

is the group of isomorphisms of the input trees of those cells which respect �:

Iso� pI pcq , I pdqq �
!
f : I pcq ��Ñ I pdq

)

For n P N∞, let Ison� pc, dq denote the group of n–th input tree isomorphisms bunched by

�, respecting �, Iso� pIn pcq {{�, In pdq {{�q.

Where c � d, this group Ison� pc, cq is denoted Autn� pcq.

Define Ison� pN q �
�
c,dPCpN q Ison� pc, dq. This forms a groupoid structure, in the sense that

it has a binary operation (function composition) which is not defined for all pairs f, g P

Ison� pN q, but satisfies the remainder of the group axioms where it is defined.

Where � � �N in these definitions, we may abbreviate it: for example, IsonN pc, dq.

The following results are proved in Aldis (2005).

Theorem 4.1.10. Cells of a network N which are equivalent under a balanced equivalence

relation � on N have infinite input trees which are equivalent with respect to �. That is,

� ¤ �∞
� .

Corollary 4.1.11. If � is a balanced equivalence relation on a network N , then �∞
� is the

same relation as �.

Lemma 4.1.12. Given a network N and any equivalence relation � on N , the relation �∞
�

is a balanced equivalence relation on N .

Proposition 4.1.13. If � and � are two relations on a network N such that � ¤ �, then

also �∞
� ¤ �∞

� .
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4.1.3 Reduced, Duplicate, and Constraint Sets

In later chapters, we will be interested in how relations fail to be balanced. Here we take an

equivalence relation � on a network N and work with a kind of quotient of N called the

‘reduced network’, which is equal to the balanced quotient N {{� if and only if � is balanced;

we are mostly interested in what happens when � is not balanced. This is based on Stewart

and Parker (Preprint) — that paper uses ‘reduced’ and ‘constraint’ sets: we make a new

definition of the ‘duplicate’ set. We also show that if a relation is not balanced, then it is

not balanced at some cell, c, in the sense that it is not balanced at pc, rq, where r is the cell

in a given transversal R of � such that r � c. We later use this to find appropriate cells for

perturbation. A new concept we introduce here is that of an ‘augmented reduced system’,

which adds constraint cells back into the reduced system in a controlled way.

Definition 4.1.14. Let � be an equivalence relation on (the cells of) a network N .

Take some transversal R of �. For each cell c, let R pcq be defined by c � R pcq P R.

Partition the remainder of C pN q into two parts, C and D:

1. If I pcq � I pR pcqq, then c P D.

2. Otherwise, c P C.

Then we call R, D and C the reduced, duplicate and constraint sets for this transversal of

�.

Remark 4.1.15. The cells d in the duplicate set are precisely those where the relation � is

balanced at pr, dq for all r P R. The constraint set C � ∅ precisely if � is unbalanced. The

following lemma takes this idea a little further.

Lemma 4.1.16. Let � be an equivalence relation on a network N , and R a transversal of
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�. If � is 1–balanced at pc, R pcqq for all c P C pN q, then � is balanced on N .

Proof. Suppose c, d are cells of N such that � is unbalanced at pc, dq. Then c � d, so

R pcq � R pdq: however, c �1
� d.

Consider the following chain of relations:

c
?
�1
� R pcq � R pdq

?
�1
� d

Since c �1
� d, at least one of the relations

?
�1
� must be false. Suppose without loss of

generality that it is the left-hand relation. Then c �1
� R pcq, but c � R pcq. So the relation

� is not balanced at pc, R pcqq.

Definition 4.1.17. Suppose R is a reduced set for an equivalence relation � on N — that

is, R is a transversal of �. Then we define the reduced network R � N {{R � � pR, ERq as a

kind of ‘pseudo-quotient’ of N . The cell set of this network is the reduced set R itself. For

each r P R, the input set of r in this network, IR prq, is defined (with reference to its input

set IN prq in the network N ) by IR prq � R pIN prqq, where R pc, d, tq � pR pcq , R pdq , tq.

Then the edge set ER �
�
rPR pIR prqq.

Remark 4.1.18. If d is any cell in D, the pseudo-quotientN {{R� is isomorphic to the pseudo-

quotient N {{R1 �, where R1 � pRz tR pdquq Y tdu: this is why we call D the ‘duplicate’ set.

For c P C, however, N {{R � � N {{R� �, where R� � pRz tR pcquq Y tcu.

If � is balanced, then this pseudo-quotient is (isomorphic to) the balanced quotient N {{�,

independently of the choice of R.

We now define a new concept, the importance of which will become apparent later.
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Definition 4.1.19. Let R,D,C be reduced, duplicate and constraint sets for an equivalence

relation � on a network N . Let c P C, then we define the augmented reduced network

Rc � N {{cR �. The cell set of this network is R Y tcu; for each r P R, the input set of r in

this network is equal to the input set IR of r in R � N {{R �. The input set of c is defined

by IRc pcq � R pIN pcqq, in the same way as the input sets of r P R. Note that c features in

no input sets, and therefore has no output edges.

4.2 The Lattice of Balanced Equivalence Relations

As remarked earlier, the ordering ¤ on equivalence relations gives a lattice with minimal

element � and maximal element J. We now prove that under the same partial ordering,

the set of balanced equivalence relations also forms a lattice with a minimal element (the

relation �) and a maximal element (which we denote '). A proof of this was given in

Stewart (2007): that proof uses a number of sophisticated techniques to obtain the result

for a class of not-necessarily-finite networks which includes all locally finite networks. Here,

we detail the proof given in Aldis (2008) which is the major result added to that paper after

its submission as Aldis (2005).

Note that the paper where this result appeared used a more general notion of multiplicity

than we use here. However, the proof is the same in either context.

Theorem 4.2.1. For a given network N , the set of balanced equivalence relations on N

forms a complete lattice under the partial order given by refinement. In particular, N has a

maximal and a minimal balanced equivalence relation.

Proof. For any network N , � is (trivially) a balanced equivalence relation, so the set of
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4 The Lattice of Balanced Equivalence Relations

balanced equivalence relations on N is non-empty and bounded below.

Take a non-empty set Y of balanced equivalence relations on N . Then let � denote the

equivalence relation
�
Y , its join (taken in the lattice of equivalence relations on N ). We

show that this relation � is balanced: if c � d, then by definition there is some finite chain

c � c0 �1 c1 �2 � � � �n cn � d with �i P Y for each i. In particular, each �i is balanced.

This means that the input sets of ci�1 and ci are equivalent under �i, so they are equivalent

under �. Since equivalence under � is an equivalence relation, the bunched input set of

c � c0 is isomorphic to that of cn � d with respect to �. Finally, we show that � �
�
Y

is a refinement of �N . Since all the relations in Y are refinements of the cell and edge

equivalences �N , this �N is an upper bound for Y in the set of equivalence relations on N .

Hence
�
Y ¤ �N , as required.

We have shown that the partially-ordered set of balanced equivalence relations on N has a

minimal element, and that any non-empty subset Y of this set has a join. By 2.2.1, the set

of balanced equivalence relations on N is therefore a complete lattice, and so, in particular,

it has a maximal element.

We have shown that there are two relations on N which are maximal and minimal balanced

equivalence relations. As remarked above, the minimal balanced equivalence relation is �.

The structure of the maximal balanced equivalence relation ' was examined at length in

Aldis (2005, 2008). We give the result again here, for completeness.

Theorem 4.2.2. Given a network N , the maximal balanced equivalence relation ' on N is

given by c ' d if and only if I∞ pcq {{�N �N I∞ pdq {{�N . That is, ' � �∞
N .

Corollary 4.2.3. If � is an equivalence relation which is balanced on N , then � is ∞–

balanced at all pairs of cells pc, dq from N .

47



4 The Lattice of Balanced Equivalence Relations

4.2.1 Submaximal Balanced Equivalence Relations

Aldis (2008) determined the existence of a maximal balanced equivalence relation ' on

any network, and described its structure. An interesting question which has not yet been

answered would be: what balanced equivalence relations � are there on N such that �   ',

but if �   ' then � �  �? This would lead to a greater understanding of the structure of

the lattice of balanced equivalence relations, and might inform further study.

4.3 Forward Relations

This chapter has so far followed the usual treatment in this field by considering only equiva-

lence relations. We now extend the concept of balance to a more general class of relations:

these relations will be useful in examining the ‘phase relations’ of chapter 10. Most of the

concepts transfer directly, although a small amount of formal work would be required to

describe bunching.

Definition 4.3.1. Let � be an equivalence relation on a set S, and   a relation on S such

that:

1. a   b, a   c ùñ b � c,

2. a   b, c   b ùñ a � c,

3. a � b   c ùñ a   c,

4. a   b � c ùñ a   c.

For example, with S � N, the relation � could be congruence modulo 13, �13, and n   m

precisely if n� 6 �13 m.
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4 The Lattice of Balanced Equivalence Relations

Then we call   a forward relation over �.

Remark 4.3.2. Despite the notation, forward relations are not, in general, order relations.

On the contrary, they describe the relation given by some ‘step forward’: in addition to the

numerical example given above, consider the relation on points on the Earth’s surface given

by ‘is 3km due east of’. Notice that if points x, y are both 3km due east of some other point

z, then x and y are the same place; in the other direction, if z is 3km due east of both x

and y, then again x and y are equal. Thus this relation is a forward relation over equality.

As an alternative geographical example, let � denote the equivalence relation which relates

points of equal longitude. Then let   denote ‘has a longitude of thirty degrees more than’

— this relation would be a forward relation over �.

Remark 4.3.3. Any equivalence relation � is a forward relation over itself.

Lemma 4.3.4. Consider the set R of forward relations on a set S over a given equivalence

relation � as a partially-ordered set, with refinement order ¤. While this set is not a lattice,

every non-empty subset X of R has a well-defined meet,
�
X �

�
X, when relations in X

are considered as subsets of S � S.

Proof. Let Î � ∅ be a set of forward relations on a set S over a given equivalence relation

�. Let N �
�
Î. Then we show that N is a forward relation on S over �.

Let   be any relation in Î. Take a, b, c P S such that a N b and a N c. Then a   b and

a   c, so b � c. Similarly, if aN b and cN b, then a   b and c   b, so a � c.

Suppose a � b N c. Then b   c for all   P Î, so a   c for all these  . Hence a N c.

Similarly, if aN b � c, then a   b and so a   c for all   P Î, hence aN c.

This shows that N is a forward relation, as required.
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4 The Lattice of Balanced Equivalence Relations

To see that R is not a lattice (for non-trivial choices of S and �), consider a, b P S. Then

there is a forward relation   such that a   b — for example, the relation such that a1   b1

for pa1, b1q � pa, bq and c ¢ d for pc, dq � pa, bq. In addition, � is a forward relation over �.

If O ¤ �, , then aO b (by  ) and aO a (by �), so a � b, by property 1 of section 4.3.1.

Thus a � b for all a, b P S. This shows that if � � J, the set of forward relations over � is

not a lattice.

4.3.1 Balanced Forward Relations

Having defined forward relations, we can now say what it means for such a relation to be

balanced. The definitions and results are exactly analogous to those for balanced equivalence

relations given earlier in this chapter.

Definition 4.3.5. Let   be a forward relation over �, where  ,� are relations on some

network N . Then define a relation  � on C pN q by c  � d if I pcq {{�   I pdq {{�.

Further, let n P N∞. Define  n� by c  n� d if In pcq {{�   In pdq {{�.

Definition 4.3.6. Let   be a forward relation over � on a network N . Then we call   a

balanced forward relation (over �) if   ¤  1
�.

Remark 4.3.7. Recall that an equivalence relation � on N is a forward relation over itself.

Notice that �n
� � �n

�, and so � is a balanced equivalence relation exactly when it is a

balanced forward relation over itself.

The results from this chapter carry over directly to the class of balanced forward relations.

Theorem 4.3.8. Cells of a networkN which are equivalent under a balanced forward relation

  over � on N have infinite input trees which are equivalent with respect to  . That is,

  ¤  ∞
� .
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Proof. Since   is balanced, there is a  –preserving isomorphism between the input sets

of any pair of  –related cells. Take two cells c, d of N , and as in Aldis (2005, Theorem

4.2), inductively define an isomorphism ϕp∞q of bunched input sets by ‘joining’ copies of

appropriate isomorphisms of input sets at each generation.

Corollary 4.3.9. If   is a balanced forward relation over � on a network N , then  ∞
� is

the same relation as  .

Proof. For cells c, d P N , theorem 4.3.8 ensures that c   d ùñ c  ∞
� , so we need only

show c ¢ d ùñ c ¢∞
� . This is trivial, as c, d are the roots of the input trees I∞ pcq and

I∞ pdq; if c ¢ d then these trees cannot be  –equivalent.

Lemma 4.3.10. Given an equivalence relation � on a network N , and any forward relation

  over � on N , the relation  ∞
� is a balanced forward relation on N .

Proof. The relation  ∞
� can trivially be seen to refine  .

Theorem 4.3.11. Given a network N with a forward relation   over � on N , the maximal

balanced refinement of   is  ∞
� .

Proof. Exactly as theorem 4.2.2. Let � denote the maximal refinement of   which is

balanced over �. Since it is balanced over �, we have that �∞
� � � by corollary 4.3.9.

Meanwhile, since � refines  , �∞
� refines  ∞

� . Also,  ∞
� is balanced, by lemma 4.3.10, so

 ∞
� ¤ �. Thus:

� � �∞
� ¤  ∞

� ¤ �

Hence all of these relations are equal, and in particular � � ∞
� , as required.
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5 Admissible Functions

As mentioned previously, this thesis deals with the concepts of balanced equivalence relations

and differential equations. This chapter begins to bring together these two strands, defining

the link between functions and networks: ‘admissible functions’. In order to do this in a

clear and concise way, we introduce a new kind of algebraic structure in section 5.1. Derived

from the multiset, and sharing properties with vector spaces, we call this new structure a

‘multispace’.

In section 5.2, we use this new ‘multispace’ concept to define cell and input spaces, over

which our ‘admissible functions’ will be defined. The motivation for this definition is to ensure

that c �1
N d precisely when the input space of c is equal to that of d. This result ensures that

admissible functions ‘fit with’ the structure of the given network in a well-defined way. In

section 5.2.2, we define these admissible functions and examine what it means for a function

to be admissible, in terms of the induced functions on the underlying vector spaces of cell

input spaces. Section 5.3 expands upon this by providing some basic ‘machinery’ to work

with admissible functions, starting with lifts and quotients, and moving on to basic extension

theorems. The section — and this chapter — finishes with an example to demonstrate these

theorems.
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5.1 Multispaces

As remarked earlier, a multiset lies conceptually between a set and a tuple. Considering it

as an unordered tuple, we now consider the derived analogue of a vector space. Motivated

by the representation of vector spaces as sets of tuples, we define a new kind of space, the

‘multispace’, as a set of multisets. We shall see that this is not a vector space — although,

like a normed vector space, it is a metric space, and therefore a topological space. We shall

assume from now on that all our vector spaces are normed.

As is well understood, a vector space over a field K, with basis e1, . . . , en, may be represented

faithfully by (i.e., is isomorphic to) the vector space V � t px1, . . . , xnq | xi P K @i u, with

operations of addition and scalar multiplication defined in the obvious manner. Given a norm

on a vector space, }�} : V Ñ R�, we can define a metric d on V by d pv, wq � }w � v}.

Given two (or more) vector spaces, V,W , we can define the Cartesian product of these

spaces, V �W in the obvious way; as is well known, this product is also a vector space, and

the operation � is commutative up to isomorphism: that is, V �W � W � V , although

V �W is not generally equal to W � V . Multispaces are also a kind of product of vector

spaces, the difference being that our product is commutative up to equality.

Definition 5.1.1. Given a (finite) set of distinct vector spaces tV1, . . . , Vnu, and a corre-

sponding set of multiplicities tλ1, . . . , λnu, we define the multispace over V1, . . . , Vn with

multiplicities λ1, . . . , λn to be the set V
rλ1s

1 � � � ��V
rλns
n �

"
M1 Y � � � YMn

���� Mi

λi
�� Vi

*
.

We refer to λi as the multiplicity of Vi in V
rλ1s

1 �� � ��V rλns
n ; if W is a vector space which does

not feature in the set tV1, . . . , Vnu, we say that W has multiplicity 0 in V
rλ1s

1 � � � �� V
rλns
n .

Let pV : Aq denote the multiplicity of V in A.

For brevity and clarity, we may also write the multispace over t Vi u with multiplicities t λi u
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respectively as
Æ

i V
rλis
i .

Note that if two or more vector spaces are equal, but we wish them to be distinct for use

in forming a multispace, we may ‘mark’ them by forming the usual vector space Cartesian

product of each with the singleton set containing a distinct natural number. This trivial fact

is important, since it is essential to be clear which spaces are equal and which are merely

isomorphic, as we now see as we define what it means for multispaces to be isomorphic.

Definition 5.1.2. Two multispaces A �
æ

1¤i¤m

V
rλis
i , B �

æ
1¤i¤n

W
rµis
i are called isomorphic

if n � m, and there is some permutation π P Sn such that Vi � Wπpiq and λi � µπpiq for all

i.

For comparison, note that A and B are equal if n � m and there is some permutation π P Sn

such that Vi � Wπpiq and λi � µπpiq for all i.

Definition 5.1.3. Given a pair of multispaces A,B over V1, . . . , Vn and W1, . . . ,Wm with

multiplicities λ1, . . . , λn and µ1, . . . , µn respectively, we define the ‘star product’ A�B to

be a multispace over the union U � t Vi | 1 ¤ i ¤ n u Y t Wj | 1 ¤ j ¤ m u. Notice that

this union may not be disjoint, in which case it will contain fewer than m� n vector spaces.

The multiplicity of Uk P U in A�B is the sum of the multiplicities of Uk in A and B.

Thus A�B �
Æ

uPU u
rpu:Aq�pu:Bqs.

Remark 5.1.4. Recall that if a vector space Uk only appears in one of these multispaces —

say, A — then its multiplicity in the other (B) will be 0, and so its multiplicity in A�B will

equal that in A; thus if the union t Vi | 1 ¤ i ¤ n u Y t Wj | 1 ¤ j ¤ m u is disjoint, then

the multiplicity of each vector space in the star product will simply equal its multiplicity in

whichever of A and B it appears.
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Whether this union is disjoint or not, the sum of multiplicities of all Uk in A�B will equal

the sum of all λi and µj: that is,
°
uPU pu : A�Bq �

°n
i�1 λi �

°m
j�1 µj.

Every multispace has a ‘reduced form’ M � V
rλ1s

1 � � � ��V
rλns
n , unique up to order of terms,

where Vi � Vj for i � j and λi � 0 for all i. Where we wish to emphasise (or ensure) that

this is the case, we may write V
rλ1s

1 � � � �� V
rλns
n in place of V

rλ1s
1 � � � ��V

rλns
n .

We may extend the operation � to an accumulative operation on a set of multispaces:

given such a set M, where for each M P M, M � V
rλM,1s
M,1 � . . .�V

rλM,nM s
M,nM

, let V �

t VM,i | M PM, 1 ¤ i ¤ nM u, and enumerate the distinct spaces of V as V � tV1, . . . , Vnu.

For 1 ¤ j ¤ n, let λj �
°
MPM pVj : Mq. Then �MM is the multispace

Æ
i V

rλis
i .

Definition 5.1.5. Let A be a multispace, A � V
rλ1s

1 � � � ��V
rλns
n . The underlying space of

A is a vector space ˜A � V λ1
1 � � � � � V λn

n .

Remark 5.1.6. Notice that ‘the’ underlying space of A is in fact dependent on the expression

of A. Different ways of expressing A as a star product give different, but isomorphic,

underlying vector spaces. Thus when we consider the underlying space of some multispace,

we must make a choice; having chosen an underlying space for a particular multispace, we

must stick to our choice. To facilitate this, let all the vector spaces in use be put into an

arbitrary, but fixed, order, V1,V2 . . ., and take the canonical form of a multispace A to be

the reduced form defined above, with the terms listed in this order.

Definition 5.1.7. Let v P V be a vector in the underlying space of a multispace A. Write

v � pv1, . . . , vnq, where vi P V
λi
i , and each vi �

�
v1
i , . . . , v

λi
i

�
. We define the projection

of v into A by ˜v
A
� ˜�

A
pvq � Þ vji

�� 1 ¤ i ¤ n, 1 ¤ j ¤ λi ß. Notice that the preimage
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S
t�1u
A � V of a multiset S P A is a finite set of vectors: in particular, we see that

���St�1u
A

��� � ±
1¤i¤n pλi!q±
sPS pε

A psq!q

We also extend the concept of underlying space to Cartesian products of multispaces:

�A�B � ˜A� ˜B.

We use this underlying space to define a natural metric on multispaces.

Definition 5.1.8. Let A be a multispace, A � V
rλ1s

1 � � � ��V
rλns
n . Let V be the underlying

space of A, with metric dV . Let S, T P A be two multisets. Define the distance dA pS, T q �

dV

�

˜St�1u
A

, ˜T t�1u
A

	
� inf

!
dV pv, wq

��� v P ˜�
t�1u
A pSq , w P ˜�

t�1u
A pT q

)
.

Lemma 5.1.9. This dA is a metric on A.

Proof. Straightforward: we prove this from first principles. Let S, T, U P A.

1. dA pS, Sq � inf
!

dV pv, wq
��� v, w P ˜St�1u

A

)
� 0.

2. dA pS, T q � inf
!

dV pv, wq
��� v P ˜St�1u

A
, w P ˜T t�1u

A

)
� inf

!
dV pw, vq

��� v P ˜St�1u
A

, w P ˜T t�1u
A

)
� dA pT, Sq.

3. Since ˜St�1u
A

is finite, for all s P ˜St�1u
A

there is some t P ˜T t�1u
A

such that dV ps, tq �

dA pS, T q. Similarly, let u P ˜U t�1u
A

such that dV pt, uq � dA pT, Uq. Then dA pS, Uq ¤

dV ps, uq ¤ dV ps, tq � dV pt, uq � dA pS, T q � dA pT, Uq.

Remark 5.1.10. Although pA, dq is a metric space, it is not a vector space, since we cannot

define a reasonable definition of ‘addition’. For example, let A � Rr3s. Take a � Þ1, 1, 2ß P A

and b � Þ1, 0, 0ß P A. Then a � b could be defined as Þ2, 1, 2ß or Þ1, 1, 3ß, and there is
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no way to choose between these alternatives. Forming identifications of points to make this

addition well defined would always result in a trivial one-point space, which would be useless.

5.2 Functions on Networks

We now define the fundamental link between functions (and therefore systems of differential

equations) and networks: the notation of an ‘admissible function’ on a network, which is a

function which ‘fits with’ the network in a sensible way. While the structure and outcome

are similar to those given, for example, in Golubitsky and Stewart (2006); Stewart et al.

(2003), we use a slightly different underlying definition, which uses multispaces to make

the formulation more obvious. The next section will prove some basic results about these

functions.

5.2.1 Cell and Input Spaces

In this section, we define the spaces over which our ‘admissible functions’ will be defined.

These are multispaces, as defined above.

Definition 5.2.1. Given a network N , a choice of phase space for N is a choice of a vector

space for each cell type of N . We denote the space associated with the type [c] of cell

c P N by P p[c]q, or just P pcq. The phase space of the network N is then the product

space P pN q �
±

cPCpN qP pcq.

A point x P P pN q � PC pN q is called a value on the network: the component xc is called

the value on the cell c.

We require that the phase spaces of distinct cell types are themselves distinct, although they
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may be isomorphic. Notice that this is easy to ensure by ‘marking’ a space with the cell type

with which it is associated. Conversely, notice that phase spaces of cells of the same type

are actually equal, not merely isomorphic as vector spaces.

We now define some phase spaces in an appropriate way to work well with input trees and

bunching as defined earlier.

Definition 5.2.2. Given an edge e � cÑ
t
d, the phase space of e is the phase space of its

tail c, marked with the type t of the edge: P
�
cÑ

t
d
	
� P pcq � ttu.

Given a multiset of edges S, its phase space is the star product of the phase spaces of the

edges: P pSq � �ePS P peq.

Definition 5.2.3. Given a tree T of depth 1 with root r, and a choice of phase spaces on

T , we define the input space of T to be QT � P prq � P pE pT qq.

Given a cell c in a network N , we define its input space to be the input space of its first

input tree, QI pcq � P pcq � P pE pI pcqqq.

Remark 5.2.4. This definition ensures that, if I pcq �N I pdq, then QI pcq � QI pdq. In

fact, this implication is true in both directions.

5.2.2 Admissible Functions

We now define the central notion of an ‘admissible function’. We make this initial definition

in terms of the multispaces QI pcq — however, we then consider these functions as functions

on the underlying spaces of theQI pcq, which returns us to the same definitions as Golubitsky

and Stewart (2006).
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Definition 5.2.5. A function f is said to be admissible at a cell c of a network N if

f : QI pcq Ñ P pcq. A function F :
�
cQI pcq Ñ

�
cP pcq is called an admissible function

on N if it can be expressed as the union of admissible functions at the cells, F �
�
c fc :

QI pcq Ñ P pcq. Note that because F must be a well-defined function, this ensures that

c �N d ùñ fc � fd.

When defining a function f on QI pcq, it is natural to consider it as a function ˜f on the

underlying space �QI pcq of QI pcq. This space is PCI pcq, which is the product space of

the phase spaces of the cells of the input tree of c. Note that this space includes both the

internal phase space P pcq and the ‘coupling phase space’ T I pcq of Golubitsky et al. (2005).

The following diagram shows the relationship between f and ˜f :

QI pcq

˜�
QIpcq //

f $$H
HH

HH
HH

HH
PCI pcq

˜fzzttttttttt

P pcq

Motivated by this method of defining functions, we now characterise the admissible functions

on N in terms of functions on the underlying spaces PCI pcq.

Definition 5.2.6. A function f is said to satisfy the domain condition at a cell c of a network

N if

f : PCI pcq Ñ P pcq

We may describe a function Fc : P pN q Ñ P pcq as satisfying the domain condition at c if

Fc depends only on the values on cells in CI pcq: in other words, there is some fc such that
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this diagram commutes:

P pN q π //

Fc $$H
HH

HH
HH

HH
PCI pcq

fczzttttttttt

P pcq

where π is the natural projection P pN q Ñ PCI pcq. (Note that to appear in this diagram

in this way, fc must satisfy the domain condition as formulated above.)

Definition 5.2.7. A function f is said to be admissible at a cell c of a network N if it

satisfies the domain condition at c, and:

f
�
xCβIpcq

�
� f

�
xCIpcq

�
@β P Aut1

N pcq , x P P pC pN qq

A pair of functions pf, gq are said to be admissible at a pair of cells pc, dq if f, g satisfy the

domain condition at c, d respectively, and:

g
�
xCβIpcq

�
� f

�
xCIpcq

�
@β P Iso1

N pc, dq , x P P pC pN qq p�q

Remark 5.2.8. The condition p�q is called the pushforward condition — it is exactly equiv-

alent to the standard ‘pullback condition’ — as used, for example, in Golubitsky and Stewart

(2006); Stewart et al. (2003); Stewart and Parker (December 2007, 2008), and Golubitsky

et al. (2005, equation 2.1). It is easy to see that f is admissible at c precisely when pf, fq

is admissible at pc, cq.

Definition 5.2.9. A set of functions F � t fc : PCI pcq Ñ P pcq | c P C pN q u is said to

be admissible over N if pfc, fdq is admissible at pc, dq for all c, d P C pN q.

We describe F : PC pN q Ñ PC pN q as admissible if each component Fc : PC pN q Ñ P pcq

is admissible.
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Definition 5.2.10. For any β P Iso1
N pc, dq which is a function β : I pcq Ñ I pdq, let β also

denote a function PCI pcq Ñ PCI pdq, defined by pβxqCIpcq � xCβIpcq. Then this diagram

commutes:
CI pcq β

ÝÝÝÑ CI pdq

P
��� P

���
PCI pcq β

ÝÝÝÑ PCI pdq

We call β : PCI pcq Ñ PCI pdq the pushforward map of β : CI pcq Ñ CI pdq.

Remark 5.2.11. With this definition, we can characterise the pushforward condition by

saying that the following diagram commutes for all β P Iso1
N pc, dq:

PCI pcq β
ÝÝÝÑ PCI pdq

fc

��� fd

���
P pcq P pdq

Lemma 5.2.12. Suppose � is a balanced equivalence relation on a network N , and x P

PC pN q such that c � d ùñ xc � xd. Let F be an admissible function on the network.

Then F pxq has the same symmetry property: c � d ùñ rF pxqsc � rF pxqsd.

Proof. Immediate from the definition of admissible functions.

Lemma 5.2.13 (Vector Fields by Input Class). Let CI be a transversal of the input classes

of N , and for each c P CI , let fc be a function which is admissible at c.

Then there is an admissible vector field F over N such that Fc � fcπc (where πc is the

natural projection PC pN q Ñ PCI pcq).

Proof. The vector field F defined by the property Fc � fcπc is admissible by definition.
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5.3 Operations with Admissible Functions

Lemma 5.2.13 shows that we can construct an admissible function piecewise by defining

admissible components for each input class and then putting them together: in other words,

unions of admissible functions are admissible. In this section, we give examples of other

operations which preserve admissibility; we then go on to give a method of extending a

function which is ‘admissible in a small region of PCI pcq’ (for a given cell c) to an admissible

function on the whole of N .

5.3.1 Lifts and Quotients

We now give some results which show that admissible functions remain admissible under

pseudo-quotients and lifts; we also provide extensions of these results to augmented quotient

systems.

Lemma 5.3.1 (Admissible Quotient Lemma). Suppose R is a reduced set for an equivalence

relation � on N ; further, suppose F is an admissible function on N . Let the natural

quotient system FR be a function on R � N {{R � given by FR pxq � F
�
xR

�
where for every

x P P pRq, xR P P pN q is defined by xRc � xRpcq. Then FR is an admissible function on R.

Proof. This proof will require us to use both input networks and functions in N and those

on R, so we introduce some temporary notation to distinguish between them for now. Let

IN pcq denote the input network of c in the network N , and similarly IR pcq for R. Let

rfN sc here denote the function we usually write fc : PCIN pcq Ñ P pcq: the corresponding

function in R will be denoted rfRsc : PCIR pcq Ñ P pcq. The first stage of the proof is to

ensure that this function rfRsc exists.
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The domain condition requires that the component of FR pxq associated with the cell r,

denoted rFR pxqsr, must only depend upon xCIRprq, so it may reasonably be described by a

function rfRsc as above. By definition rFR pxqsr � F
�
xR

�
; by the domain condition for F ,

this only depends upon xRCIN prq. By construction of xR, xc � xRpcq for each cell c P CIN prq.

But R pcq P CIR prq. Hence xRCIN prq � xCIRprq, proving the domain condition. Taking

πr, πCIN prq, πCIRprq as the natural projections, and letting πR pxq � xR for x P PC pRq, this

can be summarised using this diagram:

PC pN q F //

πCIN prq &&MMMMMMMMMM
PC pN q πr // P prq

PCIN prq
rfN sr

99ssssssssss

PCIR prq
rfRsr

%%KKKKKKKKKK

PC pRq
FR

//

πCIRprq
88qqqqqqqqqq

πR

OO

PC pRq πr
// P prq

The definition of FR is precisely that the outermost arrows commute. Note that CIR prq �C

CIN prq, so PCIR prq � PCIN prq; the left section commutes by trivial properties of pro-

jections. The domain condition in N guarantees the existence of rfN sr such that the top

section commutes — the right section then gives the existence of rfRsr such that the dia-

gram commutes: the commutativity of the bottom section proves the domain condition in

R.

We prove the pushforward condition entirely by diagram chasing. As above, we recall that

CIR pcq �C CIN pcq, so PCIR pcq � PCIN pcq. Now notice that for all c P R, the construc-
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tion of rfRsc is such that this diagram commutes:

PCIR pcq

rfRsc %%KKKKKKKKK
PCIN pcq

rfN scyysssssssss

P pcq

Suppose that there is some β P Iso1
R pc, dq for c, d P R. Define βR such that this diagram

commutes:

CIN pcq
βR

ÝÝÝÑ CIN pdq

�

��� ����

CIR pcq
β

ÝÝÝÑ CIR pdq

This βR P BN pc, dq: it is an isomorphism by definition. By the pushforward condition in N ,

the following diagram commutes:

PCIN pcq
βR

ÝÝÝÑ PCIN pdq

rfN sc

��� ���rfN sd

P pcq P pdq

Then put these diagrams together to see that this diagram commutes:

PCIN pcq
βR

//

rfN sc %%KKKKKKKKK
PCIN pdq

rfN sdyyssssssssss

P pcq P pdq

PCIR pcq β
//

rfRsc
99sssssssss

PCIR pdq

rfRsd
eeKKKKKKKKKK

The commutativity of the bottom section of this diagram is the required pushforward condi-

tion in R.
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Lemma 5.3.2 (Admissible Lift Lemma). Let N be a network, and � an equivalence relation

on N which respects cell type. Let R,D,C be some reduced, duplicate and constraint

systems for �. Let FR be an admissible function over the network R � N {{R �.

Then the lift F � F�
R , defined for each c P C pN q as rf�R sc � rfRsRpcq, is an admissible

function on N , with F {{R � � FR.

Further, if F1, F2 are two admissible functions over R, with }F1 � F2}   ε, then

}F�
1 � F�

2 }   ε.

Proof. The domain condition holds trivially by the method of definition.

The proof of the pushforward condition is almost exactly the reverse of that in the proof of

lemma 5.3.1: we continue to use the notation rfRsc and rfN sc as before. Take β P Iso1
N pc, dq

for c, d P C pN q. Define βR such that the following diagram commutes:

CIN pcq
β

ÝÝÝÑ CIN pdq

�

��� ����

CIR pcq
βRÝÝÝÑ CIR pdq

This βR P BR pc, dq: it is an isomorphism by definition. By the pushforward condition in R,

the following diagram commutes:

PCIR pcq
βRÝÝÝÑ PCIR pdq

rfRsc

��� ���rfRsd

P pcq P pdq
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Then put these diagrams together to see that this diagram commutes:

PCIN pcq
β //

rfN sc %%KKKKKKKKK
PCIN pdq

rfN sdyyssssssssss

P pcq P pdq

PCIR pcq βR
//

rfRsc
99sssssssss

PCIR pdq

rfRsd
eeKKKKKKKKKK

The commutativity of the top section of this diagram is the required pushforward condition

in N .

Finally, we note that for functions F1, F2 as specified,

}F�
1 � F�

2 } � sup
cPCpN q

}rf�1 sc � rf
�
2 sc} � sup

cPCpN q

���rf�1 sRpcq � rf�2 sRpcq���

� sup
rPR

}rf�1 sr � rf
�
2 sr} � }F1 � F2}   ε

as required.

Lemma 5.3.3. Let � be an equivalence relation on a network N which respects cell type.

Let R,D,C be some reduced, duplicate and constraint systems for �, and c P C some

constraint cell. Let F be an admissible function on N .

Then the following equalities hold:

1. pN {{cR �q {{R � � N {{R �

2. rFR�sR � FR

Proof. Trivial, and omitted.

Lemma 5.3.4. Suppose R is a reduced set for an equivalence relation � on N , with
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constraint set C. Let c P C, and F be an admissible function on N . Let R� � R Y tcu.

Let the natural augmented quotient system F c
R be given by F c

R pxq|R � FR pxRq. Then F c
R

is an admissible function on R� � N {{cR �.

Proof. Consider the natural quotient system FR on R. Then by lemma 5.3.1, this is an

admissible function over R � N {{R � � pN {{cR �q {{R � � R� {{R �. By lemma 5.3.2, we

have the admissble function F c
R.

Lemma 5.3.5. Let N be a network, and � an equivalence relation on N which respects

cell type. Let R,D,C be some reduced, duplicate and constraint systems for �. Let c P C,

and R� � R Y tcu. Let FR� be an admissible function over the network R � N {{cR �.

Then the lift F�
R� , defined as in lemma 5.3.2, is an admissible function.

Proof. The proof is exactly identical to that of lemma 5.3.2.

5.3.2 Symmetrisation Extensions

This section deals with making admissible functions which are extensions of other, appropri-

ate, functions.

The nature of admissible functions means that constructing a desired function ‘all at once’ is

often difficult. To simplify matters, we use this section to show that we can define admissible

functions piecewise, in a number of ways. Firstly, the ‘pushforward proposition’ extends a

function defined at one cell of a network N into a function defined on all cells of that

network. Then we show (the ‘symmetrisation proposition’) that a suitable function defined

in a small region of PCI pcq can be extended to an admissible function on the whole of

PCI pcq. Putting these two results together, we see that a suitable function defined on a
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small region of PCI pcq can be extended to an admissible function on N .

We conclude the section with an example which demonstrates this process.

Proposition 5.3.6 (Pushforward Proposition). Let N be a network with a cell c, and

f : PCI pcq Ñ P pcq some function which is admissible at c in N .

Then there exists a function F : P pC pN qq Ñ P pC pN qq such that:

1. The function F is admissible over N .

2. The component of F corresponding to the cell c, fc � f .

Proof. For each d P C pN q such that d �I c, take some βd,c P Iso1
N pd, cq. Then we let

fd � fcβd,c, so this diagram commutes:

PCI pdq βd,c
ÝÝÝÑ PCI pdq

fd

��� ���f
P pdq P pcq

We wish to show that the pair pfd, fd1q is admissible at pd, d1q for all d, d1 �I c; in other

words, fd1 pCβI pdqq � fd pCI pdqq for all β P Iso1
N pd, d

1q.

Take β P Iso1
N pd, d

1q. Then set βc,c � βd1,cββ
�1
d,c , so β � β�1

d1,cβc,cβd,c. In other words, this

diagram commutes:

PCI pdq

β

""

βd,c
// PCI pcq

βc,c
// PCI pcq

β�1
d1,c

// PCI pd1q
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Now βc,c P Aut1
N pcq, so fβc,c � f since f is admissible at c; this diagram commutes:

PCI pcq βc,c
ÝÝÝÑ PCI pcq

f

��� ���f
P pcq P pcq

Finally,

fd1β � fcβd1,cβ � fcβd1,cβ
�1
d1,cββd,c � fcββd,c � fcβd,c � fd

as required. This is illustrated in the following commutative diagram:

PCI pdq

β

""

βd,c
//

fd
��

PCI pcq
βc,c
//

f

��

PCI pcq
β�1
d1,c

//

f

��

PCI pd1q
fd1
��

P pdq P pcq P pcq P pd1q

The required property is shown by the outside set of arrows.

Definition 5.3.7. Let N be a network with a cell c, and x� P P pC pN qq.

For each β P Ison� pN q, let rβ �
1
2

d
�
x�CIpcq, x

�
CβIpcq

	
; set r � min t rβ | β P Ison� pN q , rβ � 0 u.

Then r ¡ 0 is called the radius of disjoint symmetric neighbourhoods of x� at c.

We now come to the main result of this section, which shows that a sufficiently symmetrical

function defined on a sufficiently small region in PCI pcq can be extended to an admissible

function on N . The proof is somewhat technical; we follow it with an illustrative example.

Proposition 5.3.8 (Symmetrisation Proposition). Let N be a network with a cell c, and

X � PCI pcq.

Let X̃ �
�
βPAut1N pcq βX.
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Let f� : X Ñ P pcq be some function such that f� pxq � f�β pxq for all x P X where

β P Aut1
N pcq such that βx P X; we call a function with this property admissible in X at c.

Let f� : PCI pcq Ñ P pcq be some function which is admissible at c.

Then there is some f : PCI pcq Ñ P pcq which is admissible at c, such that f |X � f�, and

f
���PCIpcqzX̃ � f�

���PpcqzX̃ .

Thus by proposition 5.3.6, there is an admissible function F on N such that fc|X � f�,

where fc is the component of F corresponding to the cell c.

Proof. For β P Aut1
N pcq, and x P X, we let f pβxq � f pxq, which defines f pxq for all

x P X̃ exactly as required.

The crucial observation is that for β, β1 P Aut1
N pcq, if the points βx and β1x1 are equal for

some x, x1 P X and β, β1 P Aut1
N pcq, then β� � β1β�1 P Aut1

N pcq such that β�x � x1.

Thus f�β� � f� in X; this means f�β1β�1 � f�, so f�β � f�β1, and f is well-defined, as

required.

Now we may let f be any admissible function outside X̃ (here, f�), and we have an admissible

f .

Remark 5.3.9. The functions f� and f� interact in the definition of f only at the boundary

BX̃, where the value of f� is derived from the value at BX, and the value of f� must satisfy

the pushforward condition. Thus, if f� and f� are Cn functions which agree in value and

all n derivatives at the boundary BX, f will also be Cn.

We now give the promised illustrative example of the Symmetrisation Proposition.

Example 5.3.10. Consider the network pictured in figure 5.1. Let P plq � R, and

P plq � C. Let the underlying space of the input space of cell 1 be considered in the
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1 2

43

Figure 5.1: An example network, with 4 cells. In order to simplify the diagram, edge types
are shown by arrowhead styles.

order px1;x2, x3, x4q. By symmetry, px1;x3, x2, x4q would be an equally valid representation:

this information is represented by the cell input isomorphism which transposes cells 2 and 3 in

the input tree of cell 1. The pushforward of this isomorphism takes pw;x, y, zq to pw; y, x, zq.

As is common in this area, we use a line over the permuted coordinates to express that a

function has the appropriate symmetry for this condition: writing a function as f pw;x, y, zq

means that f pw;x, y, zq � f pw; y, x, zq.

Let c � 1, and let f� pw;x, y, zq � 0, so f� trivially satisfies the conditions for admissibility

at c.

Let C be the cube t pw, x, y, zq | |w| , |x| , |y| , |z|   1 u, as shown in figure 5.2, and set

X � C � p1, 2, 3, 4q. Let b pw, x, y, zq � Bump

���w
2
, x, y, z

3

���
10

.

Now let

f� pw;x, y, zq � b ppw, x, y, zq � p1, 2, 3, 4qq � Bump pd ppw, x, y, zq , p10, 9, 8, 7� 6iqqq

Note that f� is not admissible at cell 1 due to the second term in this definition: for

example, let x � p10, 9, 8, 7� 6iq and β pw, x, y, zq � pw, y, x, zq, then f� pxq � 1 � 0 �

f� p10, 8, 9, 7� 6iq � f�βx. Inside X, however, the function f� is symmetric, since the

second term is identically zero there, and therefore f� is admissible at cell 1 inside X.
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P(1)

P(4)

P(2)
P(3)

Figure 5.2: The (5–dimensional) cube C.
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As in proposition 5.3.8, we let X̃ denote the symmetric images of X, so X̃ � pC � p1, 2, 3, 4qqY

pC � p1, 3, 2, 4qq. Let f � f� inside X̃, and f � f� elsewhere. The situation is shown in

figure 5.3.

P(1)

P(4)

P(2)
P(3)

B

B
_

X

X
_

Figure 5.3: The construction of f .

Let x,y P PCI pcq, and take β P Aut1
N pcq such that x � βy. We show that x P X̃ ðñ

y P X̃.

As remarked above, Aut1
N pcq � tid, p2 3qu. If β � id, the result is obvious. Let β � p2 3q.

Since β � β�1, we may assume without loss of generality that x � pw, x, y, zq P X̃,
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and show that y � pw, y, x, zq P X̃. If x � pw, x, y, zq P X̃, then either x P X, so

0   w   2, 1   x   3, 2   y   4, 3   z   5, or x P βX, so 0   w   2, 1   y   3, 2  

x   4, 3   z   5. In the first case, y P βX; in the second, y P X. In either case, this

shows that y P X̃.

This shows that x P X̃ ðñ y P X̃, so we need only consider two cases: either x,y P X̃

or x,y R X̃.

Suppose x,y R X̃. Then f pxq � f� pxq � 0 � f� pyq � f pyq.

Now suppose x,y P X̃. Take points x1,y1 P X such that x1 � β1x and y1 � β2y. Then

since f� is admissible inside X, f� px1q � f� py1q. By the symmetrisation procedure in

proposition 5.3.8, this value is the value we choose for both f pxq and f pyq. This shows

that the new function f is admissible.

In fact, this new function is precisely given by:

f pw;x, y, zq � b ppw, x, y, zq � p1, 2, 3, 4qq � b ppw, y, x, zq � p1, 2, 3, 4qq

.
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Differential Equations

Chapter 5 began the process of linking the two strands of this thesis, by defining our admissible

functions. We now complete this process, by defining an admissible vector field, in the obvious

way.

The main results of this thesis concern the ‘patterns of synchrony and phase shift’ of tra-

jectories. Unlike the specific trajectory curves themselves, these are symmetry properties

of the trajectories, and therefore applicable to many different trajectories — they may also

be subject to examination without obtaining a full ‘solution’ to the differential equation, in

the normal sense. We introduce these ‘patterns of synchrony and phase shift’ formally in

section 6.2, and then define ‘rigidity’, which is a property of patterns of synchrony designed

to disregard ‘physically impossible’ solutions, where the precise mathematical setup of the

equations gives a possible solution which disappears completely under small perturbations.

Note that our notation differs slightly from Stewart and Parker (2008), although our defini-

tions are analogous: the notation here is chosen to accord well with the other notation used

in this thesis.
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In section 6.2.2, we extend the results from section 5.3.1 concerning lifts and quotients

of admissible functions to results on equilibria and periodic trajectories of the differential

equations defined by these functions. It is section 6.2.3, however, that contains in some

sense the most important results of this chapter, showing that there are unique maximal

rigid patterns of synchrony and phase for a given trajectory. Without these results, it would

be meaningless to try to consider the structure of these patterns.

The chapter concludes with the presentation of four previously conjectured statements which

have been outstanding questions in this field: see, for example Stewart and Parker (2008) for

a discussion of the importance of these conjectures. We prove these statements, in various

special cases, in chapters 7,8,9,10.

6.1 Admissible Differential Equations

Recall that chapter 5 defined an admissible function on a network, and chapter 2 defined a

system of differential equations. As is usual in this field, for example, in Golubitsky et al.

(2005); Stewart and Parker (December 2007, 2008, Preprint), we now put these two concepts

together, linking systems of differential equations and networks in the following (obvious)

definition:

Definition 6.1.1. An admissible system of differential equations on a network N is a dif-

ferential equation 9x � F pxq where F : P pN q Ñ P pN q forms an admissible function on

N .
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6.2 Patterns of Synchrony and Phase Shift

The main results of this thesis — in chapters 7,8,9,10 — concern properties of periodic

trajectories which are preserved under small admissible perturbations. We introduce these

properties here: we define the ‘pattern of synchrony’ of an equilibrium or trajectory of a

differential equation, and what it means for such a pattern to be ‘robust’ and ‘rigid’.

Let N be a network, and F an admissible system of differential equations on N .

Definition 6.2.1. Let x : R Ñ P pN q: for example, x could be a trajectory of F . Define

the pattern of synchrony of x to be an equivalence relation �x on the cells of N defined

by c �x d if xc � xd; that is, xc ptq � xd ptq for all t P R. Call any refinement of �x a

synchrony relation of x.

Note that x could be an equilibrium trajectory of F : that is, x ptq � x� P P pN q for all

t P R; the pattern of synchrony of x� would then be defined by c �x� d if xc � xd. To

simplify the notation in this case, let �� denote �x� .

Definition 6.2.2. Let x be a periodic function x : r0,Θq Ñ P pN q: for example, x could

be a periodic trajectory of F . Let θ P r0,Θq. Define the pattern of θ–shift of x to be a

forward relation Wθ
x over �x on the cells of N , defined by c Wθ

x d if xc ptq � xd pt� θq for

all t. In this way, �x �W0
x.

Call any refinement of Wθ
x a θ–shift relation of x: for arbitrary θ, call these relations phase

relations of x.

Recall that for an equivalence relation � on N , we denote n–th input tree equivalence by

�n
�. In the case where � � ��, we denote �n

� by �n
�; where � � �N , we denote �n

� by

�n
N . Similarly, where � � �x, denote �n

� by �n
x. Where � �Wθ

x, denote �n
� by �n

x,θ.
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As mentioned before, our notation differs slightly from that of Stewart and Parker (2008):

where that paper uses �X to denote the maximal pattern of synchrony of a trajectory x,

we use �x. Also, the previous work uses 9�X to denote the general ‘phase relation’ of cells:

this relation is equal to
�

θ W
θ
x in our notation, where

�
denotes the join in the lattice of

arbitrary relations. We prefer the new notation described here because, as shown in Stewart

and Parker (2008, section 4.1), ‘the phase shift’ between two cells is not necessarily uniquely

determined. So-called ‘multirhythms’, where a given cell has a shorter period than that of

the whole system, can give multiple phase shifts between two cells. For this reason, our

notation incorporates an explicit phase shift θ, and we consider whether two cells have this

specific phase relation.

To illustrate this issue, we now give an example.

Example 6.2.3. Let x be a Θ–periodic trajectory of an admissible system of differential

equations F over a network N , such that cell c has period Θ and cell d has period Θ{6.

Further, suppose c1 is a cell such that xc1 ptq � xc pt�Θ{2q, and d1 a cell such that xd1 ptq �

xd pt�Θ{2q. We say that this network exhibits ‘multirhythms’, as in Stewart and Parker

(2008), because some cells have a lesser period than that of the whole trajectory. As remarked

there, we find it difficult to consider ‘the’ phase shift between two cells. The phase shift θc,c1

between c and c1 must be equal to
�
n� 1

2

�
Θ for n P Z: it is reasonable to choose n � 0 so

that 0 ¤ θc,c1 �
1
2
Θ   Θ. However, the phase shift θd,d1 between d and d1 is nΘ

6
� 1

2
Θ. A

reasonable choice for this might be to make θd,d1 as small as possible: θd,d1 �
1
3
. However,

this does not signify clearly that d WΘ{2
x d1, which is important if we are to compare ‘the’

phase shifts of the pairs pc, c1q and pd, d1q.

These ‘multirhythms’ will not cause our notation or proofs problems: we shall examine how

our method works with an example later.
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6.2.1 Rigidity

In this thesis, we aim to show that certain patterns of synchrony are ‘generic’, whereas some

others are ‘rare’, and therefore do not occur except in systems specially constructed to have

them. We now give a precise definition of this ‘rarity’ by defining what it means for a pattern

of synchrony to be ‘rigid’: the other patterns (which we call ‘fragile’) are the rarities.

Definition 6.2.4 (Stewart et al. (2003, Definition 6.2)). Let � be an equivalence relation on

N . Then � is robustly polysynchronous if, for all admissible systems of differential equations

F , and all trajectories x ptq of F with initial conditions x p0q with synchrony relation �, then

� is a synchrony relation of x ptq for all t P R.

Definition 6.2.5. Let x� be an equilibrium of F . Suppose � is some synchrony relation of

x�, and there exist ε, δ ¡ 0 such that for F̂ any ε–perturbation of F , and x̂� an equilibrium

of F̂ in B px�, δq, � is a synchrony relation of x̂�, then we call � a rigid synchrony relation

for x�. Otherwise, we call it fragile.

Definition 6.2.6. Let S be a metric space; suppose x : R Ñ S is a Θ–periodic function

and x̂ : RÑ S is a Θ̂–periodic function. Then we say that x and x̂ are pδ, ηq–close if x and

x̂ are δ–close between 0 and the larger of Θ, Θ̂, with
���Θ̂�Θ

���   η.

If, in addition, x̂|R � x|R for some set R � R, then we say that x and x̂ are pδ, ηq–close

respecting R.

Definition 6.2.7. Let x be a periodic orbit of F . Suppose � is some synchrony relation

of x, and there exist ε, δ, η ¡ 0 such that for F̂ any ε–perturbation of F , and x̂ a periodic

orbit of F̂ which is pδ, ηq–close to x, the same relation � is a synchrony relation of x̂, then

we call � a rigid synchrony relation for x. Otherwise, we call it fragile.
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6.2.2 Lifts and Quotients

Recall (section 5.3.1) that given an admissible function F on a network N , and a balanced

equivalence relation � on N , there is a function F {{� on N {{�, which is admissible over this

network. We now show that equilibria and periodic trajectories of the system dx
dt
� F pxq

are preserved when passing to this F {{�, subject to certain conditions on their pattern of

synchrony.

Lemma 6.2.8 (Equilibrium Quotient). Let R be a reduced set for an equivalence relation �

on N . Let F be an admissible system of differential equations on N , and x� an equilibrium

of F with pattern of synchrony �� ¥ �. Then x�R is an equilibrium of FR.

Proof. For any cell c P R, IR pcq � t R pdq | d P IN pcq u. Since �� ¥ �, R pdq �� d, so

xIRpcq � xRpIN pcqq � xIN pcq.

Hence fc
�
xIRpcq

�
� fc

�
xIN pcq

�
� 0.

Lemma 6.2.9 (Trajectory Quotient). Let R be a reduced set for an equivalence relation �

on N . Let F be an admissible system of differential equations on N , and x a trajectory of

F with pattern of synchrony �x ¥ �. Then xR is a trajectory of FR.

Proof. For any cell c P R, IR pcq � t R pdq | d P IN pcq u. Since �x ¥ �, R pdq �x d, so

xIRpcq � xRpIN pcqq � xIN pcq.

Hence fc
�
xIRpcq

�
� fc

�
xIN pcq

�
� 0.

Proposition 6.2.10 (Augmented Quotient). If � is a rigid synchrony relation of x on N ,

and R is a reduced set for � with some constraint cell c, then � is also a rigid synchrony

relation of x� on R� � N {{cR �.
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Proof. On R�, the only non-trivial equivalence is c � R pcq.

Suppose F̂� is an admissible, smooth ε–perturbation of F�. Then this gives functions

f̂r : PCI prq Ñ P prq for all r P R�. For d P N , let

f̂d �

$'''&
'''%
f̂r d �I r P R

�

fd otherwise

Then this gives a small perturbation F̂ of F such that
�
F̂
��
� F̂�.

Since � is a rigid synchrony relation of x on N , then � is also a synchrony relation of x̂.

Therefore x̂c � x̂Rpcq.

Now x̂� � x̂R� is an orbit of F̂�. So x̂�c � x̂c � x̂Rpcq � x̂�Rpcq, as required.

Lemma 6.2.11 (Trajectory Lift). Let R be a reduced set for an equivalence relation � on

a network N . Let F be an admissible system of differential equations on N , and xR a

trajectory of FR. Then x, defined by xc � rxRsRpcq is a trajectory of F with some pattern

of synchrony �x ¥ �.

Naturally, if xR is an equilibrium of FR, then x is an equilibrium of F .

Proof. Again trivial, and exactly complementary to those of lemma 6.2.8 and lemma 6.2.9.

6.2.3 Maximal Patterns of Synchrony and Phase

The results in chapters 7, 9 and 10 go some way towards determining the value of the maximal

rigid pattern of synchrony (or phase shift) — in particular, towards proving the conjecture
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that this pattern is balanced. In order for this line of enquiry to make any sense, we must

show that there is a (unique) maximal rigid pattern of synchrony (phase shift) for a given

trajectory. This section proves this in the three cases — synchrony for equilibria, synchrony

for periodic trajectories, and phase shift for periodic trajectories — lending evidence to the

important questions which we give in the next section, and then prove, subject to some

limitations, in the later chapters.

Again, our notation differs from Stewart and Parker (2008): where that paper uses a super-

script of ‘rig’ to denote the maximal rigid patterns of synchrony and phase, we use a dot

over the relation: thus, their �rig
X is our 9�x. Our notation makes sense here, in the following

intuitive way. We usually denote perturbations of trajectories by overmarks: for example, x̂

or x̃ for perturbations of x. In common with our earlier notational simplification, we might

write �̂x for �x̂, and �̃x for �x̃. Then the relation 9�x is inspired by the idea of making ‘any’

perturbation to x, in effect, putting any overmark in place of the dot, just as the notation

f pt� �q uses the dot as a placeholder.

Lemma 6.2.12 (Rigid Pattern of Synchrony of Equilibrium). There is some maximal rigid

synchrony relation of x�, which we denote by 9��: that is, 9�� is a rigid synchrony relation

for x�, such that, if � is any rigid synchrony relation of x�, we have � ¤ 9��.

We call this 9�� the rigid pattern of synchrony of x�.

Proof. For a point x P P pN q, let Sx denote the set of synchrony relations for x. Let R�

denote the set of rigid synchrony relations for x�.

The set Sx is a complete lattice, with respect to the refinement order ¤: take � � Sx.

Then c r
�
�s d ùñ c � c0 �1 c1 �2 c2 �3 � � � �n cn � d for some t�iu � � ùñ xc �

xc0 � xc1 � � � � � xcn � xd ùñ xc � xd, so
�
� P Sx. Similarly, take any � P �, then
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c r
�
�s d ùñ c � d ùñ xc � xd, so

�
� P Sx.

We show that the set R� is also a complete lattice. That is, given a set of rigid synchrony

relations, � � R�, its join
�
� and meet

�
� are also rigid. Take any perturbation F̂ of

F , inducing a perturbed equilibrium x̂�, and let Ŝ� denote the set of synchrony relations of

x̂�. Then, by rigidity, � � Ŝ�, so
�
�,

�
� P Ŝ�, as required.

Thus R�, as a complete lattice, has a maximal element 9�� �
�
R�.

Lemma 6.2.13 (Rigid Pattern of Synchrony of Trajectory). Let x be a hyperbolic periodic

orbit of F . Then there is some maximal rigid synchrony relation of x, which we denote by

9�x: that is, 9�x is a rigid synchrony relation for x, such that, if � is any rigid synchrony

relation of x, we have � ¤ 9�x.

We call this 9�x the rigid pattern of synchrony of x.

Proof. For any periodic orbit x of F , let Sx denote the set of synchrony relations for x. Let

Rx denote the set of rigid synchrony relations for x.

The set Sx is a complete lattice, by exactly the same argument as before (with � in place

of �).

We show that the set Rx is also a complete lattice. That is, given a set of rigid synchrony

relations � � Rx, its join
�
� and meet

�
� are also rigid. Take any perturbation F̂ of

F , inducing a perturbed trajectory x̂, and let Ŝx denote the set of synchrony relations of x̂.

Then, by rigidity, � � Ŝx, so
�
�,

�
� P Ŝx, as required.

Thus Rx, as a complete lattice, has a maximal element 9�x �
�
Rx.

Lemma 6.2.14 (Rigid Pattern of θ–shift). Let x be a hyperbolic periodic orbit of F , with

period Θ. Let 0 ¤ θ   Θ. Then there is some maximal rigid θ–shift relation of x, which we
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denote by W9 θx: that is, W9 θx is a rigid θ–shift relation for x such that, if   is any rigid θ–shift

relation of x, we have   ¤W9 θx.

In fact, the set of rigid θ–shift relations for x is a complete lattice.

Proof. The proof of this lemma is again similar to those above: the main difference lies in the

use of the forward relation meet operator. Note that in contrast to the lattice of equivalence

relations on a set, the set of all forward relations on a set is not a lattice. However, this will

not harm our proof, as we now demonstrate.

For any periodic orbit x of F and phase shift θ P R, let Sx,θ denote the set of θ–shift relations

for x. Let Rx,θ denote the set of rigid θ–shift relations for x.

The set Sx,θ is a complete lattice, with respect to the refinement order ¤: take Î � Sx,θ.

Then the meet
�
Î is defined as in lemma 4.3.4 by c r

�
Îs d if and only if c   d for all

  P Î. We show that this is also a θ–shift relation for x. Take   P Î: if c r
�
Îs d then

c   d, so xc ptq � xd pt� θq for all t. Thus
�
Î is a θ–shift relation. As remarked earlier,

arbitrary sets of forward relations need not have well-defined joins. However, in the order of

this set Sx,θ, we set the relation
�
∅ to be defined by c r

�
∅s d if xc ptq � xd pt� θq for

all t. This is clearly a θ–shift relation for x; by definition, any θ–shift relation for x must be

a refinement of this relation. Then by theorem 2.2.1, Sx,θ is a complete lattice under the

refinement order.

We also show that the set Rx,θ is also a complete lattice. That is, given a set of rigid

θ–shift relations Î, its join
�
Î and meet

�
Î are also rigid. Take any perturbation F̂ of

F , inducing a perturbed trajectory x̂, then by rigidity Î � Sx̂,θ. So
�
Î,

�
Î P Ŝx, as

required.

Thus Rx,θ is a complete lattice; in particular, it has a maximal element W9 θx �
�
Rx,θ.
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6.3 Important Questions

We now come to the discussion of the questions in the field which are particularly inter-

esting: how does balance interact with existence of equilibria or trajectories? Recall from

chapter 1 that any balanced equivalence relation is robustly polysynchronous; further, that

any robustly polysynchronous equivalence relation is balanced. Since robust polysynchrony

of � implies rigidity of � as a pattern of synchrony for any trajectory (or equilibrium) with

synchrony relation �, all balanced equivalence relations make rigid patterns of synchrony. In

the following chapters, we attempt to prove the opposite implication: given a trajectory with

a rigid pattern of synchrony �, the relation � is balanced.

Recall the Rigid Synchrony Conjecture of Stewart and Parker (December 2007), as stated in

chapter 1:

Rigid Synchrony Conjecture (Stewart and Parker (December 2007) Conjecture 6.1). Let

G be any coupled cell network, and suppose that X is a periodic orbit of some G-admissible

vector field f . Assume that X is rigid. Then its pattern of synchrony �X is balanced.

As mentioned in chapter 1, we prove some specific cases (and a generalisation) of this

conjecture in chapters 7,9,10. We give these cases below.

Rigid Equilibrium Theorem (Theorem 7.2.3). Let F be an admissible system of differential

equations over a network N , with some transverse equilbrium x�. The rigid pattern of

synchrony of x� is the maximal balanced equivalence relation refining ��.

The following two theorems rely on technical conjectures 9.3.1 and 10.2.3. Justification for

these conjectures appears with their statements, in chapters 9 and 10.

Limited Rigid Synchrony Theorem (Theorem 9.3.3). Let F be an admissible system over
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a network N , with some hyperbolic periodic orbit x. Assume conjecture 9.3.1. Then the

rigid pattern of synchrony of x is the maximal balanced equivalence relation refining �x.

Limited Rigid Phase Theorem (Theorem 10.3.3). Assume conjecture 10.2.3 holds.

Let N be a network and F an admissible system of differential equations on N with a

hyperbolic trajectory x of period Θ. Let θ P r0,Θq, then the rigid θ–shift relation W9 θx of x

must be the maximal balanced refinement of Wθ
x (as a forward relation over �x on N ).

In addition, the very recent work of Golubitsky et al. (Preprint) has proved the Rigid Syn-

chrony Theorem, in the following form:

Rigid Synchrony Theorem (Golubitsky et al. (Preprint) Theorem 6.1). Suppose Z0 ptq is

a hyperbolic periodic solution of 9Z � F pZq. Then the coloring associated to ∆ pZ0q is rigid

if and only if it is balanced.

We discuss their method briefly in chapter 9.

As has been suggested by Stewart and Parker (2008), the results in periodic systems are

easiest to prove if a property called ‘full oscillation’ holds: a trajectory has this property

if every cell is oscillating. It has been conjectured that this property holds for almost all

admissible systems on all networks — in fact, the conjecture states that the property is

generic: given any such system, it may be perturbed (admissibly) by an arbitrarily small

amount to get a system where the property holds.

Stewart–Parker Conjecture 3.3 (Full Oscillation Conjecture). In a path-connected net-

work, whenever x is a hyperbolic periodic orbit which is not an equilibrium, there exists a

small admissible perturbation of the vector field having a perturbed periodic orbit x̂ ptq in

which no cell is in equilibrium.
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Golubitsky et al. (Preprint) have proved this result recently; we also prove this result in

chapter 8: in fact, we prove a strictly stronger result. We call our result ‘strong oscillation’;

it is stated here for motivation.

Strong Oscillation Property (Property 8.2.1). Let F be an admissible system of differential

equations over a network N , and x a hyperbolic periodic trajectory of F . Then x has the

strong oscillation property if given a cell c, the set of times
 
t P R

�� dxc
dt
ptq � 0

(
has zero

measure.

Strong Oscillation Theorem (Theorem 8.2.2). For every hyperbolic periodic trajectory x

of an admissible system of differential equations F over a path-connected network N , and

every ε ¡ 0, there is some ε–perturbation F̂ of F such that the trajectory x̂ near x satisfies

the Strong Oscillation Property.
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7 The Rigid Equilibrium Theorem

The first of the three ‘rigid-balance’ theorems we prove in this thesis is the rigid equilibrium

theorem; in contrast to the limited proofs of the other versions of the rigid synchrony and

phase conjectures, given in the following chapters, the proof of the rigid equilibrium conjecture

given in this chapter is complete, and does not rely on an additional ‘niceness’ property of the

trajectory (we will see these properties, called ‘tameness’ and ‘semi-tameness’, in chapter 9).

This is because in an equilibrium, every ‘trajectory’ of a cell is a single point in its phase space.

Any two of these points are either identical or disjoint, which makes it considerably easier to

prove the rigid equilibrium theorem than to answer the other questions of section 6.3.

The rigid equilibrium theorem has already been proved in Golubitsky et al. (2005), however

the proof given here is new and very different to the previous proof. It is usual in perturbation

problems to make use of a transversality argument, but this method is not used in the previous

proof. We show in this chapter that it is possible, and indeed natural, to use a transversality

argument. This argument extends, with some modifications, to the results in the following

chapters.

The first section of this chapter deals with basic results on transversality. Most can be found

in Hirsch and Smale (1974); the only one of these that is at all original shows that transverse

equilibria remain transverse after taking balanced quotients. However, the transversality
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theorem of section 7.1.1 is both novel and important: it shows that an admissible perturbation

may be made to an admissible system of differential equations to turn any equilibrium into a

transverse equilibrium. This is very important for the proof of the rigid equilibrium theorem.

The proof of the rigid equilibrium theorem follows in section 7.2, and uses multiple perturba-

tions: we first perturb the given vector field to give it certain desirable properties, and then

we use these properties to show the existence of a perturbation which is synchrony-breaking,

as required. A similar method of proof will also be used to prove results relating to the rigid

synchrony and rigid phase conjectures in the following chapters.

7.1 Isolation and Transversality

This section starts with some definitions of well-known properties and simple results about

equilibria of systems of differential equations. We then show that one of these properties,

transversality, may be attained by making a small admissible perturbation to any admissible

system of differential equations on a network. This property will form the basis of our proof

of the rigid equilibrium theorem in the next section.

In this section, let F be any system of differential equations.

Definition 7.1.1. An equilibrium x� of F is isolated if there is some δ ¡ 0 such that

t x P B px�, δq | F pxq � 0 u � tx�u. We may specify the value of δ by using the term

δ–isolated.

Definition 7.1.2 (Transversality). Let F be a system of differential equations with an equi-

librium x�. Then x� is transverse in F if detDF px�q � 0.

The following property is well-understood in the context of the lemma following it, although
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this definition is original to this thesis.

Definition 7.1.3 (Transversality Property). Suppose x� is an equilibrium of F , and there

are some ε, δ ¡ 0 such that for all ε–perturbations F̂ of F , F̂ has a unique equilibrium

in B px�, δq. Then we say that x� satisfies the transverse property . We call this ε the

transversality value of F .

Lemma 7.1.4. If x� is a transverse equilibrium of F , then x� satisfies the transversality

property.

Proof. Let x� be a transverse equilibrium of a system F of differential equations which is

admissible over some network N .

We state Theorem 1 of Chapter 16 of Hirsch and Smale (1974) using the notation from that

source. In this notation, E is a vector space, and the space of linear maps from E to itself is

denoted L pEq. Further, W is an open set in E, and U pW q denotes the set of all C1 vector

fields on W ; that is, C1 functions f : W Ñ E. This set is equipped with the C1 norm and

becomes a normed vector space. A ‘neighbourhood’ of a point v in a vector space V (for

example, x P E or f P U pW q) is any subset N � V that contains an open ball around v

(under the vector space norm). A final difference is that Hirsch and Smale (1974) uses x1

where Anosov and Arnold (1988) uses 9x, and we prefer d
dt
x.

Hirsch–Smale Theorem 16.1. Let f : W Ñ E be a C1 vector field and x̄ P W an

equilibrium of x1 � f pxq such that Df px̄q P L pEq is invertible. Then there exists a

neighbourhood U � W of x̄ and a neighbourhood N � U pW q of f such that for any g P N

there is a unique equilibrium ȳ P U of y1 � g pyq. Moreover, if E is normed, for any ε ¡ 0

we can choose N so that |ȳ � x̄|   ε.

In this proof, we shall refer to this theorem simply as ‘the Theorem’.
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Let W � B px�, δq � PC pN q and E � PC pN q. Then let f denote the restriction of F to

W . Thus f : W Ñ E is a C1 vector field. Let x̄ � x�.

Note that transversality is a local property, so since x� is a transverse equilibrium of F it is

likewise transverse in f — that is, D px̄q is invertible. So by the main part of the Theorem,

we can find U and N which satisfy the given properties.

Since N is a neighbourhood of f , it contains some open ball around f . Let ε be the radius

of this ball. Thus if F̂ is any (admissible) ε–perturbation of F , its restriction g � F̂
���W P N.

Thus by the Theorem, g has a unique equilibrium ȳ P U . To make the notation consistent

with the rest of this thesis, define x̂� � ȳ.

We let δ be the radius of a ball around x� � x̄ which is contained in U . Then using the

second part of the Theorem (‘Moreover...’), we can ensure that x̂� is inside B px�, δq. Since

this ball is entirely contained in U , and the equilibrium x̂� is unique in U , we have that x̂�

is the unique equilibrium of g (and therefore F̂ ) in B px�, δq.

It remains to ensure that detDF̂ px̂�q � 0. Notice that although we have chosen a particular

ε and δ above, the result will also hold with any smaller values, as long as their calculation

is only based upon f and x�. We therefore revisit our choice of ε and δ to ensure that the

ball B px�, δq has no points x where |detDf pxq|   ε (this is possible since Df is continuous

and detDf px�q � 0). Thus when F̂ and therefore g are chosen to be ε–close to F and f ,

we have that detDg pxq � 0 for all x P B px�, δq — in particular, detDF̂ px̂�q � 0.

Corollary 7.1.5. Let F be a system of differential equations with a transverse equilibrium

x�. Then x� is an isolated equilibrium of F .

Proof. By lemma 7.1.4, there are some δ, ε ¡ 0 such that for all ε–perturbations F̂ of F , F̂

has a unique equilibrium in B px�, δq. F̂ � F is such an ε–perturbation, so it has a unique
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equilibrium in B px�, δq, which must be x�. Hence x� is a δ–isolated equilibrium of F .

In general, lifts and quotients with respect to some transversal of an equivalence relation do

not preserve isolation or transversality of equilibria. However, where the relation is balanced,

we may take the balanced quotient without disrupting these properties.

Lemma 7.1.6. Let � be a balanced equivalence relation on a network N ; let F be an

admissible system of differential equations on N and x� an ε–transverse equilibrium of F ,

with � a synchrony relation of x�.

Then x�{{� is an ε–transverse equilibrium of F {{� on N {{�.

Proof. Let v P P pC pN {{�qq be an eigenvector of D rF {{�s px�{{�q with eigenvalue 0. Define

v� by rv�sc � vc. Then v� is an eigenvector of DF px�q, with eigenvalue 0. So if F {{� is

not transverse, neither is F .

7.1.1 The Transversality Theorem

The theorem in this section shows that any admissible system of differential equations may be

admissibly perturbed to make a given equilibrium into a transverse equilibrium. Importantly,

it does this without moving the equilibrium itself. This level of control will become important

in the following proof of the rigid equilibrium theorem.

Theorem 7.1.7 (Transversality Theorem). LetN be a network and F a system of differential

equations which is admissible over N . Let x� P P pN q be an equilibrium of F . Suppose

ε ¡ 0 is given. Then there is an admissible ε–perturbation F̃ of F such that x� is a transverse

equilibrium of F̃ .
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Proof. Without the restriction to admissible perturbations, this result is a well-known and

direct consequence of Sard’s Theorem. However, we restrict here to admissible perturbations,

which a priori could cause problems.

For each c P C pN q, let Rc be the radius of disjoint symmetric neighbourhoods of x� at c.

Let r � min pt Rc | c P C pN q u Y t1uq ¡ 0.

Now use theorem 2.6.4, with X, Y, x�, R, r, ε in that theorem respectively equal to

P pN q ,P pN q, x�, r, r{2, ε here, to obtain a function bound ∆ ¡ 0.

Let J � DF px�q. Assume that det J � 0 (otherwise F itself is a sufficient example

of F̃ ). Now J has a number of eigenvalues λi, some of which are equal to 0. Take

δ � min pt∆u Y t |λi| � 0 uq{ 2 ¡ 0. Then the matrix J̃ � J � δI has no zero eigenvalues.

For each c P C pN q, define f̃�c pxc;x1, x2, . . .q � fc pxc;x1, x2, . . .q � δ pxc � x�c q in the

region B
�
x�CIpcq, r{2

	
. Note that f̃�c

�
x�CIpcq

	
� fc

�
x�CIpcq

	
� 0, and

���f̃�c pxq � fc pxq
��� �

δ |pxc � x�c q|   δ for all x P B
�
x�CIpcq, r{2

	
. Also, Bf̃�c

Bxd
px�q � Bf�c

Bxd
px�q for all d � c,

but Bf̃�c
Bxc

px�q � Bf�c
Bxc

px�q � δ. This being the case,
���f̃�c pxq � fc pxq

��� ¤ δ   ∆ for all x P

B
�
x�CIpcq, r{2

	
, and we may use theorem 2.6.4 to define f̃�c in B

�
x�CIpcq, r

	
zB

�
x�CIpcq, r{2

	
which is smooth and equal to fc at the outer boundary of this region such that���f̃�c pxq � fc pxq

���   ε for all x P B
�
x�CIpcq, r

	
.

We show that f̃�c pxq � f̃�c pβxq for all β P Aut1
N pcq such that x� � βx� and x P

B
�
x�CIpcq, r

	
. If β P Aut1

N pcq with x� � βx�, then β : I pcq Ñ I pcq must preserve

the root of I pcq. Hence β pcq � c. Therefore, for x P PCI pcq, pβxqc � xc. So

f̃�c pβxq � fc pβxq � δ ppβxqc � x�c q � fc pβxq � δ pxc � x�c q. Since fc is admissible at

c, fc pβxq � fc pxq, so f̂�c pβxq � fc pxq � δ pxc � x�c q � f̃�c pxq, as required.

Hence, by proposition 5.3.8, we can define F̃ to be an admissible function on N , with
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components f̃�c for each c P C pN q inside the regions B
�
x�CβIpcq, r

	
, and equal to fc for

points outside the union of these regions.

We immediately see that
���f̃�c pxq � fc pxq

���   ε for all x P PCI pcq, thus F̃ is an ε–

perturbation of F . The Jacobian of F̃ at x� is DF̃ px�q � D rF � δ pid�x�qs px�q �

DF px�q � δD rid�x�s px�q � J � δI � J̃ , which has no zero eigenvalues by construction.

So x� is a transverse equilibrium of F̃ .

7.2 The Rigid Equilibrium Theorem

This section contains the main result of this chapter, in two halves: first, we prove that

balanced synchrony relations of transverse equilibria are rigid. Following that, we come to

the more technically involved direction: an unbalanced pattern of synchrony of an (arbitrary,

not necessarily transverse) equilibrium is fragile.

Our line of attack is as follows. Firstly, perturb to ensure that the given equilibrium x�

is transverse. Then take some reduced set R for the pattern of synchrony �� of x�, and

consider the quotient system F {{R��: perturb this to ensure that the quotient of x� is also

transverse in the quotient system. Further perturb this perturbed F {{R�� in the component

for a cell where �� is not balanced, and reassemble a perturbed F using the results of

chapter 5; the equilibrium near x� in this perturbed system has broken symmetry, by the

method of construction.

Proposition 7.2.1. Suppose � is balanced on N . Let F be an admissible system of

differential equations on N and x� a transverse equilibrium of F with � a synchrony relation

of x�. Then � is a rigid synchrony relation for x�.
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7 The Rigid Equilibrium Theorem

Proof. Let R be a reduced set for �, and ε the transversality value of x�. Then, since � is

balanced, x�R is an ε–transverse equilibrium of FR.

Suppose F̂ is an ε–perturbation of F . Since F is transverse, F̂ has a unique equilibrium x̂�

near x�. Also, F̂R is an ε–perturbation of FR, and has some unique equilibrium x̂�R near x�R.

This induces an equilibrium rx̂�Rs
� of F̂ ; � is a synchrony relation of rx̂�Rs

�. By uniqueness,

x̂� � rx̂�Rs
�, and so � is a synchrony relation of x̂�, as required.

Theorem 7.2.2. Let F be an admissible system over a network N , with some equilibrium

x�. Let �� denote the pattern of synchrony of x�. Suppose �� is unbalanced.

Let ε ¡ 0 be given. Then there is some ε–perturbation F̂ of F such that, if x̂� denotes the

equilibrium of F̂ near x�, the pattern of synchrony of x̂� is a strict refinement of ��, or the

two patterns are incomparable. That is, the synchrony of x� is not rigid.

Hence, for equilibria, unbalanced patterns of synchrony are not rigid, or, in the contrapositive,

rigid patterns of synchrony are balanced.

Proof. By theorem 7.1.7, we may take an ε{2 perturbation F 1 of F such that x� is a

transverse equilibrium of F 1. Let ε1 be the smaller of ε{2 and the transversality value of x� in

F 1. Then all ε1–perturbations of F 1 are ε–perturbations of F , and have a unique, transverse,

equilibrium δ1–near x� for some δ1, by lemma 7.1.4. p�q

Now let R,D,C be some reduced, duplicate and constraint sets for ��. Let R � N {{R��.

Since this symmetry is not balanced, C � ∅. Take c P C, so �� is not balanced at pc, R pcqq.

Consider F 1
R � F 1{{R�� as a system of differential equations overR. Since F 1

R pxq � F 1
R px

�q,

the point x�R � πRx
� P P pRq is an equilibrium of F 1

R. Using theorem 7.1.7 again, we may

make an admissible ε1{2–perturbation taking this F 1
R to F̃R such that x�R is a transverse

equilibrium of F̃R.
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7 The Rigid Equilibrium Theorem

Let F̃ denote the lift F̃��

R ; this is an ε1{2–perturbation of F 1. Hence x� is transverse in the

system F̃ , by p�q above. Let ε̃ be the smaller of the transversality value of x� in F̃ and ε1{2.

Then all ε̃–perturbations of F̃ are ε–perturbations of F which have a unique, transverse,

equilibrium δ1–near x� and a unique equilibrium δ̃–near x� for some δ̃; these must be the

same equilibrium.

Let r1 be the radius of disjoint symmetric neighbourhoods of x� at c.

Then r1  
1
2

d
�
xCIpcq, xCβIpRpcqq

�
@β P Aut1

N pcq.

Also, let r2 �
1
2

min
 

d
�
xCIpcq, xCIpdq

� �� c �I d^ c �� d
(

.

Now let r � min tr1, r2u. Note that this means that

B
�
x�CβIpcq, r

	
X B

�
x�CIpdq, r

	
� ∅ for all d P R and β P Iso1

N pc, dq. p�q

Now, as in remark 2.6.6, we form f̂c, an admissible ε̃–perturbation of f̃c in B
�
x�CIpcq, r

	
,

in which the equilibrium local to x�c is some x̂�c � x�c . We know this equilibrium x̂�c P

B
�
x�CIpcq, r

	
.

Then we may symmetrise f̂c into the system F , by proposition 5.3.8: let F̂ denote this

symmetrisation. This F̂ is equal to F outside the regions B
�
x�CβIpcq, r

	
, and so F and F̂

are equal inside the regions B
�
x�CIpdq, r

	
for d P R, by p�q. Hence F̂R

���
Bpx�R,rq

� FR

���
Bpx�R,rq

:

in particular, x�R is an equilibrium of F̂R.

Since this F̂ is a ε̃–perturbation of F̃ , it has a unique equilibrium δ–near the equilibrium

x� of F 1. Let x̂� denote this equilibrium, and let �̂� denote its pattern of synchrony. The

component of x̂� associated to the cell c must be the x̂�c defined above, which is not equal

to x�c .

Suppose the synchrony is unbroken by this perturbation: �̂� ¥ ��. Then, by lemma 6.2.8,

x̂�R is an equilibrium of FR; also, d px̂�R, x
�
Rq ¤ d px̂, xq   δ. But x̂�R is a δ–isolated equilibrium
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7 The Rigid Equilibrium Theorem

of F̂R, so x̂�R � x�R. This creates a contradiction: x�R � x̂�R, but rx�RsRpcq � x�Rpcq � x�c �

x̂�c � x̂�Rpcq � rx̂�RsRpcq.

Therefore, the pattern of synchrony �� must be broken by this perturbation.

Theorem 7.2.3 (Rigid Equilibrium Theorem). Let F be an admissible system over a network

N , with some transverse equilibrium x�. The rigid pattern of synchrony of x� is the maximal

balanced equivalence relation refining ��.

Proof. Let '� denote the maximal balanced refinement of ��. This relation '� is a pattern

of synchrony for x�, and is balanced. Hence '� is a rigid synchrony relation for x�, by

proposition 7.2.1, so '� ¤ 9��.

All rigid patterns of synchrony for x� are balanced, by theorem 7.2.2, and must refine ��.

Thus '� ¥ � for all rigid patterns of synchrony, by maximality. In particular, '� ¥ 9��.

This shows that '� � 9�� — that is, the maximal balanced equivalence relation refining ��

is the rigid pattern of synchrony of x� — and completes the proof of the Rigid Equilibrium

Theorem.
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8 The Strong Oscillation Theorem

Stewart and Parker (2008) consider the property of ‘full oscillation’. A (periodic) trajectory

of a system of differential equations over a network N is said to be ‘fully oscillatory’ when no

cell is in equilibrium. The results given by Stewart and Parker (2008) assume full oscillation

as a hypothesis.

The results in this chapter prove a stronger version of full oscillation than that conjectured

in this previous work: we call this property ‘strong oscillation’.

The full oscillation theorem has recently been proved in Golubitsky et al. (Preprint) by a

rather technical method, but the proof we give here, in addition to proving a slightly stronger

property, is a more straightforward geometrical argument.

We start with some results about hyperbolicity, and then proceed to strong oscillation.

8.1 Hyperbolicity

Recall that a trajectory x of an admissible system F of differential equations over a network

N is hyperbolic if rDF s pxq has no purely imaginary eigenvalues. We now state a property

which is a well-known consequence of hyperbolicity; we will in fact use this property, and not
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8 The Strong Oscillation Theorem

hyperbolicity itself, for all our proofs. This is interesting, since a slightly modified version of

this property also holds for some non-hyperbolic trajectories, as we shall see in chapter 10.

Property 8.1.1 (Hyperbolic Property). Let F be a system of differential equations, and x

be a Θ–periodic trajectory of F . Then x has the hyperbolic property if there is some ε0 ¡ 0

(which we call a hyperbolic bound) such that for all ε P p0, ε0q, there exist δ, η ¡ 0 such

that for all ε–perturbations F̂ of F , there exists a unique trajectory x̂ of F̂ which is δ–close

to x, and this x̂ has period Θ̂ P pΘ� η,Θ� ηq.

Definition 8.1.2. A trajectory which satisfies the hyperbolic property is called a pseudo-

hyperbolic trajectory .

Lemma 8.1.3. Every hyperbolic trajectory of a system of differential equations satisfies the

hyperbolic property.

Proof. Standard result, given for example in Anosov and Arnold (1988).

Note that when we talk of ‘unique’ trajectories here, we mean unique up to phase shift.

That is, if we say that x is the unique trajectory that satisfies some property, we mean that

if y is a trajectory which satisfies the same property, then there is some θ P R such that

y ptq � x pθ � tq for all t P R. Since the differential equation 9x � F pxq is autonomous, this

is as unique as it can be: given a trajectory x of a system of differential equations F , all

trajectories y � x pθ � �q are also trajectories of F . We will revisit this idea in chapter 10.

Using this lemma, we may restate the property of rigidity.

Definition 8.1.4. Let x be a hyperbolic periodic orbit of F with hyperbolic bound ε0.

Suppose � is some synchrony relation of x such that for all ε0–perturbations F̂ of F , the

same relation � is a synchrony relation of the nearby trajectory x̂ of F̂ .
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8 The Strong Oscillation Theorem

Then we call � a rigid synchrony relation of x.

This definition easily extends to pseudo-hyperbolic trajectories.

Definition 8.1.5. Let x be a pseudo-hyperbolic periodic orbit of F with hyperbolic bound

ε0. Suppose � is some synchrony relation of x such that for all ε0–perturbations F̂ of F ,

the same relation � is a synchrony relation of the nearby trajectory x̂ of F̂ .

Then we call � a rigid synchrony relation of x.

When we consider hyperbolic trajectories in this chapter from now on, we in fact only use the

hyperbolic property. While this is immaterial to the current proofs, this will become critical

in the next chapter. Additionally, many of the results in this chapter will not depend upon

hyperbolicity at all, and although it seems integral to the statement of the rigid synchrony

theorem, in fact we only use the hyperbolic property at the final stage of the proof. This

fact will be very useful in the next chapter.

8.2 The Strong Oscillation Theorem

It is usual in this area to consider only those trajectories which are ‘fully oscillating’: that is,

given a cell c, the function xc : R Ñ P pcq is not constant. This assumption is spelled out,

for example, in Stewart and Parker (2008, conjecture 3.3):

Stewart–Parker Conjecture 3.3 (Full Oscillation Conjecture). In a path-connected net-

work, whenever x is a hyperbolic periodic orbit which is not an equilibrium, there exists a

small admissible perturbation of the vector field having a perturbed periodic orbit x̂ ptq in

which no cell is in equilibrium.
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8 The Strong Oscillation Theorem

Stewart and Parker (2008, example 3.6) shows that the full oscillation conjecture, or a

similar statement, is necessary to derive the rigid synchrony theorem for general networks

and trajectories. Here, we shall prove a stronger statement than the given full oscillation

conjecture: we call it the strong oscillation theorem.

Property 8.2.1 (Strong Oscillation Property). Let F be an admissible system of differential

equations over a network N , and x a periodic trajectory of F . Then x has the strong

oscillation property if given a cell c, the set of times
 
t P R

�� dxc
dt
ptq � 0

(
has zero measure.

The strong oscillation property effectively says that a trajectory is almost always fully oscil-

lating.

Recall that a network N is path-connected if for any pair of cells c, d in N there is a path

c � c0
e1Ñ c1

e2Ñ � � �
en�1
ÝÑ cn�1

enÑ cn � d of edges ei P E pN q.

Theorem 8.2.2 (Strong Oscillation Theorem). For every pseudo-hyperbolic periodic trajec-

tory x of an admissible system of differential equations F over a path-connected network

N , and every ε ¡ 0, there is some ε–perturbation F̂ of F such that the trajectory x̂ near x

satisfies the Strong Oscillation Property. In other words, the Strong Oscillation Property is

generic.

Proof. In this proof, we shall use the term ‘interval’ to mean an interval of non-zero Lebesgue

measure in R.

Let x be a pseudo-hyperbolic periodic trajectory of an admissible system of differential equa-

tions F over a path-connected network N , and ε ¡ 0 be given. Suppose (for contradiction)

that x does not satisfy the Strong Oscillation Property. Then there is some non-empty set of

cells C � C pN q such that for all c P C, the set of times
 
t P R

�� dxc
dt
ptq � 0

(
has non-zero

measure.
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8 The Strong Oscillation Theorem

We now show that we have some cell c and interval T � R where c has constant value but

never constant inputs. It is clear that there cannot be an interval T such that x is constant

in T (that is, xc is constant in T for all c), as the behaviour of the trajectory is entirely

determined by its current state, so if it is in equilibrium over an interval, then it is always

in equilibrium. Thus, given any interval T , there is some cell which does not have constant

value on T . Let d P C, and T be some interval over which xd is constant. Then there is

some cell d1 such that xd1 is not constant on T . Since N is path-connected, there is some

path d1 � d0 Ñ d1 Ñ � � � Ñ dn � d. Let i be the smallest integer such that di has constant

value on T . Then let c � di.

Now c is a cell with non-constant inputs such that dxc
dt
� 0 on some interval T . By definition,

fc
�
xCIpcq ptq

�
is identically 0 for t P T . This defines a curve in PCI pcq where fc is identically

zero. Let ε1 be a hyperbolic bound for F , and ε2 � ε1{2. Then there some δ ¡ 0 such that

for all ε2–perturbations F̂ of F , there exists a unique trajectory x̂ of F̂ which is δ–close to

x.

Take ε3 � min
 ��dxd

dt

�� �� dÑ c
(

. Then if F̂ is an ε3–perturbation of F , x̂d is not constant

for all cells dÑ c. Let ε � min tε2, ε3u. Then all ε–perturbations of F are ε1–perturbations,

ε2–perturbations and ε3–perturbations of F .

Because all functions under consideration must be smooth, we know that for any F̂ , there

must be some curve of points y : T Ñ PCI pcq near xCIpcq pT q on which fc is identically zero.

However, we can use an appropriate bump function to ensure that
 
t P T

�� dyc
dt
ptq � 0

(
has

measure zero. Now, let x̂ be the nearby trajectory of F̂ . If x̂CIpcq ptq � y pt1q, then consider

some interval τ around t. We show that x̂c cannot be constant on τ . If x pτq � tx�u, then

the function fc
�
xCIpcq p�q

�
is identically zero on τ . But the places where this is the case

locally form the curve y. Hence xCIpcq pτq � y pT q. Since the inputs of c are non-constant,
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this means xCIpcq p�q follows the curve y, and also cannot be constant. This contradiction

completes the proof.

Corollary 8.2.3. Let x be a periodic trajectory of an admissible system of differential equa-

tions F over a network N , such that for every path-connected component M of N , the

restricted trajectory x|M is oscillating and hyperbolic overM, then for every ε ¡ 0, there is

some ε–perturbation F̂ of F such that the trajectory x̂ near x satisfies the Strong Oscillation

Property.

Proof. Given such a trajectory and ε ¡ 0, we may apply the Strong Oscillation Theorem

to each path-connected component in sequence, each time obtaining an ε{N perturbation,

where N is the number of path-connected components inN . We consider the path-connected

components in some order such that if C is upstream of D, the component C is considered

before D. The resulting perturbation satisfies the Strong Oscillation Property.

Corollary 8.2.4. If we can show that the rigid synchrony theorem holds for all trajectories

of systems of ODEs on networks which satisfy the strong oscillation property, then the rigid

synchrony theorem holds for all trajectories of systems of ODEs on path-connected networks.

The strong oscillation theorem only holds for networks and trajectories where each upstream

component has at least one oscillating cell. This condition is required, as we now see.

Lemma 8.2.5. Let F be an admissible system of differential equations over a network N ,

and x a hyperbolic trajectory of F . Suppose C is an upstream component of N such that

xc is stationary for all c P C. Then there is some ε such that, for all ε–perturbations F̂ of

F , the trajectory x̂ of F̂ near x is stationary on all c P C.

Proof. Since C is an upstream component, it contains all cells in the infinite input trees of its

own cells: thus it is dynamically self-contained. So we may consider the network C with cells
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8 The Strong Oscillation Theorem

C and all edges from N whose ends are in C: F induces an admissible system of differential

equations FC on this network; restricting x to the cells of C gives an equilibrium xC of this

system. This equilibrium is hyperbolic, and therefore transverse, so there is some ε such that

for all ε–perturbations F̂C of FC , the trajectory x̂C of F̂C near xC is an equilibrium.
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9 The Rigid Synchrony Theorem

Recall from chapter 1 the statement of the Rigid Synchrony Conjecture originally proposed

in Stewart and Parker (December 2007).

Rigid Synchrony Conjecture (Stewart and Parker (December 2007) Conjecture 6.1). Let

G be any coupled cell network, and suppose that X is a periodic orbit of some G-admissible

vector field f . Assume that X is rigid. Then its pattern of synchrony �X is balanced.

As described in the introduction, the notation in Stewart and Parker (December 2007) differs

from the notation in this thesis. Consider the following statement, in our notation:

Theorem 9.0.6 (Rigid Synchrony Theorem). Let F be an admissible system over a network

N , with some pseudo-hyperbolic periodic orbit x. The rigid pattern of synchrony of x is the

maximal balanced equivalence relation refining �x.

This thesis examines the rigid synchrony theorem, and proves it from a conjectured result,

but does not contain a direct proof of the theorem. Rather, during its preparation, a proof

of an equivalent theorem was given by Golubitsky et al. (Preprint) — the chapter finishes

with a brief examination of this proof. In its original notation, this theorem is as follows.

Rigid Synchrony Theorem (Golubitsky et al. (Preprint) Theorem 6.1). Suppose Z0 ptq is
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9 The Rigid Synchrony Theorem

a hyperbolic periodic solution of 9Z � F pZq. Then the coloring associated to ∆ pZ0q is rigid

if and only if it is balanced.

It is worth considering the apparent difference between these three statements. The conjec-

ture given by Stewart and Parker and theorem of Golubitsky et al. merely state that all rigid

patterns of synchrony are balanced, whereas theorem 9.0.6 precisely categorises the maximal

rigid pattern of synchrony. These two conclusions are equivalent, by applying exactly the

argument of theorem 7.2.3 to patterns of synchrony of periodic trajectories (orbits) rather

than those of equilibria.

In this chapter, we examine the Rigid Synchrony Theorem, theorem 9.0.6 (RST). Firstly,

we consider the Tame Synchrony Theorem of Stewart and Parker (December 2007), which

proves the RST for a certain class of trajectories, called ‘tame’ trajectories in that paper.

We then expand the Tame Synchrony Theorem to a more general result with a more specific

conclusion; we call our new result the Semi-Tame Synchrony Theorem. It is noteworthy that

our result covers all cases where the Tame Synchrony Theorem holds, in addition to some

other cases. Our result hinges on the idea of assuming rigidity of a non-balanced synchrony,

and then using this rigidity to ensure that certain operations on the network do not break the

synchrony of the trajectory. Finally, we arrive at a situation where we can perturb to break

the synchrony, giving a contradiction. This same overall method will be useful in chapter 10.

Notably, the proof of the RST given by Golubitsky et al. (Preprint) does not immediately

guarantee the existence of a contradictory perturbation of the kind discussed above, a nec-

essary condition for the arguments of the next chapter. It is possible that the method of

Golubitsky et al. can be adapted to give a contradictory synchrony-breaking perturbation for

an assumed rigid synchrony; however, it is not immediately apparent how — we leave this

direction to further study. Such a contradictory perturbation would be useful in proving the
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Rigid Phase Conjecture, as we will see in chapter 10.

9.1 The Tame Synchrony Theorem

Stewart and Parker (December 2007) define a property of ‘tameness’ as follows:

Definition 9.1.1 (Stewart and Parker (December 2007) Definition 9.6). The periodic orbit

X is tame if it contains a point x0 that has trivial isotropy and is not an orbital overlap

point. We call x0 a tame point.

Here, the property that x0 “has trivial isotropy and is not an orbital overlap point” means

precisely that x0 � x pt0q such that there are no cells c, d P C pN q time u P r0,Θq and

network isomorphism β P Iso1 pc, dq such that:

xCIpcq
�
t0
�
� xCβIpcq puq

Using this property, Stewart and Parker (December 2007) go on to prove the following

theorem.

Theorem 9.1.2 (Tame Synchrony Theorem, Stewart and Parker (December 2007) Theorem

10.2). Let G be an all-to-all coupled network, and let f be a G–admissible vector field. Let

X be a periodic orbit of f . If X is tame and rigid, then the pattern of synchrony �X is

balanced.

As noted before, this theorem uses slightly different notation to this thesis. Here a G–

admissible vector field means a vector field admissible over the network G.
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In overview, their method is as follows. The reader is directed to the original paper for the

details.

Pass to an appropriate quotient network such that the (quotient) trajectory does not intersect

any proper balanced synchrony subspace of the network phase space (here a ‘synchrony

subspace’ is a subspace of the phase space constructed by considering those points where

some synchrony relation applies). The (quotient) point x0 remains tame in this quotient

network.

Now there is a diffeomorphism of the phase space which moves x0 out of the synchrony

subspace associated with the pattern of synchrony of x — that is, which breaks the synchrony

of x at x0. Then construct a vector field f̂ by conjugating the existing vector field f by this

diffeomorphism. This f̂ will have a trajectory with appropriately broken synchrony.

The following idea of ‘semi-tameness’ is closely related to that of tameness — the results

presented here should be understood as direct generalisations of the Tame Synchrony The-

orem.

9.2 The Semi–Tame Synchrony Theorem

The Tame Synchrony Theorem proves the Rigid Synchrony Theorem in the case of a tame

trajectory; as discussed previously, this is a trajectory with ‘tame point’ x0, which is effectively

determined by a time t0, in that x0 � x pt0q.

We define a looser property than tameness: we call it ‘semi-tameness’.

Definition 9.2.1. Let x be a Θ–periodic trajectory of a system F of differential equations

over a network N . Let R,D,C be some reduced, duplicate and constraint sets of �x.
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Then a semi-tame point of x,R,D,C is a pair pc, tq P C � r0,Θq such that there are no

r P R, u P r0,Θq and β P Iso1
N pc, rq such that xCIpcq ptq � xCβIpcq puq.

If x has a semi-tame point, then call x a semi-tame trajectory. (If C is empty, allow x to be

semi-tame by convention.)

Remark 9.2.2. Semi-tameness is a looser property than tameness, at least intuitively. This

is because, in order to find a tame point, one must find a time t0 such that x pt0q has no

orbital overlaps or (non-trivial) isotropy. We discussed the technical implications of these

requirements in the previous section. Assuming such a point is found, taking any reduced,

duplicate and constraint sets R,D,C and any constraint c P C gives a semi-tame point

pc, t0q. (And if C is empty, x is semi-tame by convention.)

For, if there are r, β, u as in section 9.2.1, then r P R � C pN q, so x pt0q has an orbital overlap

given by xCIpcq pt
0q � xCβIpcq puq. (This is a smilar observation to the remark in Stewart and

Parker (December 2007, proof of Theorem 10.2) that the only tameness condition which is

actually required is tameness in an appropriate quotient network.)

Theorem 9.2.3 (Semi–Tame Synchrony Theorem). If x is a semi-tame Θ–periodic pseudo-

hyperbolic trajectory of a system F of differential equations over a network N , and �x is

unbalanced, then the synchrony of x is not rigid.

Notice that in addition to requiring the looser semi-tameness in place of tameness, the semi-

tame synchrony theorem does not require the network to be all-to-all coupled. Thus it is a

more general theorem than the tame synchrony theorem.

Proof. Assume the synchrony of x is rigid; we argue for contradiction.

Consider the system of differential equations F c
R on R� � N {{cR �x. Then by proposi-

tion 6.2.10, x� is a trajectory of this system.
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We may make a perturbation x̂� of x� such that x̂�c � x�c using a perturbation F̂ c
R of F c

R

supported on a small neighbourhood of x�CIpcq ptq and its symmetric images. This neigh-

bourhood can be chosen small enough not to intersect xCIprq for all r P R, since pc, tq is a

semi-tame point. Thus x̂�r � x�r for all r P R, since R is self-contained and no cell in R

has its trajectory perturbed. By rigidity, this gives a lifted trajectory x̂ on N ; this lift would

give x̂c � x̂�Rpcq � x�Rpcq � xRpcq. However, c would then have the same inputs in both R�

and N , giving an alternative trajectory x̂c � x̂�c lifted directly from the cell c in R�. These

two trajectories are not equal by construction; if both trajectories were possible, this would

contradict pseudo-hyperbolicity. Reaching this contradiction completes the proof.

9.3 A Programme for Proof

We suggest that a similar method to the Tame and Semi–Tame Synchrony Theorems (as-

suming rigidity, perturbing a constraint cell’s trajectory, and deriving a contradiction) ap-

plies for any constraint cell c P C and time t such that xCIpcq ptq � xCβIpcq ptq for all

β P Iso1
N pc, R pcqq. (Notice that such a time t must exist for any given c P C, or c �x R pcq,

and c would not be a constraint cell.) This method would prove the Rigid Synchrony Theo-

rem.

To prove the RST in this way, we suggest the following programme.

Follow the same method as above, except that for any r P R such that xCIpcq ptq � xCβIpcq puq

we accept that x̂�r near u will equal x̂�c near t. Notice that by choice of t, we can be sure

even here that pr, uq � pR pcq , tq.

However, technical difficulties may arise when r Ñ r1, R pcq Ñ r2, and xCIpr1q puq �

xCβIpr2q ptq. Then if xr is perturbed by a small amount and R pcq is not, we have suggested
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9 The Rigid Synchrony Theorem

input trajectories for r1 and r2 which are close together (since F̂ must be a small perturbation

of F , and so x̂ must be close to x) but have the same gradient
dxr1

dt
puq �

dxr2
dt
ptq — thus

fr1 � fr2 must have the same value at those points. By the mean value theorem, this

requires any curve γ between these points to go through a point where fr1 has zero gradient

along γ, which places an extra constraint on (the gradient of) F̂ , which may cause F̂ � F

to have ‘large’ C1 norm.

A possible solution to this problem might be found by perturbing R pcq in the opposite

direction to r. The required points of zero gradient in F̂ would then be found on the diagonal

where r � R pcq; any admissible function (for example, F ) must have zero gradient across

this diagonal. This might allow an appropriate admissible perturbation to be constructed

with small C1 norm.

It is hoped that further research should be able to flesh out this argument and thus prove

the RST in the way suggested by the following conjecture. Notice that hyperbolicity is not

assumed in the first paragraph.

Conjecture 9.3.1. Given a periodic trajectory x of a system of differential equations F which

is admissible over some network N , suppose the pattern of synchrony �x is unbalanced but

rigid. Then we can find an admissible perturbation F̂ of F with a trajectory x̂ near x such

that �x̂ �¥ �x.

Therefore, assuming x is pseudo-hyperbolic so that this x̂ is the unique trajectory of F near

x gives a contradiction.

Given previous results such as the Tame and Semi-Tame Synchrony Theorems, it seems

reasonable to expect that a proof of this conjecture might run along the following lines.

Firstly, take some balanced quotient network to acquire trivial balanced synchrony — thus
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9 The Rigid Synchrony Theorem

any remaining synchrony is unbalanced, and should be fragile. Choose a point where some

non-balanced synchrony is exemplified, and perturb F in a small region around this point.

By an appropriate choice of perturbation, this can be made to break the synchrony of the

trajectory in a neighbourhood of the chosen point (while leaving the remainder of the tra-

jectory essentially unchanged, at least in terms of synchrony). As we shall see in the next

chapter, a proof of the RST that follows these lines would go a long way towards also proving

the Rigid Phase Conjecture.

Proposition 9.3.2. Suppose � is balanced on N . Let F be an admissible system of

differential equations on N and x a hyperbolic periodic orbit of F with � a synchrony

relation of x. Then � is a rigid synchrony relation for x.

Proof. Let R be a reduced set for �, and ε the hyperbolicity value of x. Then, since � is

balanced, xR is an ε–hyperbolic trajectory of FR.

Suppose F̂ is an ε–perturbation of F . Since F is hyperbolic, F̂ has a unique periodic

trajectory x̂ near x. Also, F̂R is an ε–perturbation of FR, and has some unique periodic

trajectory x̂R near xR. This induces a periodic trajectory rx̂Rs
� of F̂ ; � is a synchrony

relation of rx̂Rs
�. By uniqueness, x̂ � rx̂Rs

�, and so � is a synchrony relation of x̂, as

required.

Theorem 9.3.3 (Limited Rigid Synchrony Theorem). Let F be an admissible system over a

network N , with some hyperbolic periodic orbit x. Assume conjecture 9.3.1. Then the rigid

pattern of synchrony of x is the maximal balanced equivalence relation refining �x.

Proof. We follow the same line of argument as theorem 7.2.3. As before, 9�x denotes the

maximal rigid balanced pattern of synchrony.
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9 The Rigid Synchrony Theorem

Let 'x denote the maximal balanced refinement of �x. This relation 'x is a pattern

of synchrony for x, and is balanced. Hence 'x is a rigid synchrony relation for x, by

proposition 9.3.2, so 'x ¤ 9�x, by maximality of �x as a rigid synchrony relation of x.

Notice that this direction of implication does not use the conjecture.

All rigid patterns of synchrony for x are balanced, by conjecture 9.3.1, and must refine �x.

Thus 'x ¥ � for all rigid patterns of synchrony �, by maximality of 'x as a balanced

equivalence relation refining �x. In particular, 'x ¥ 9�x.

This shows that 'x � 9�x — that is, the maximal balanced equivalence relation refining

�x is the rigid pattern of synchrony of x — and completes the proof of the Limited Rigid

Synchrony Theorem.

9.4 The Rigid Synchrony Theorem: a proof from

Golubitsky et al.

During the preparation of this thesis, Golubitsky et al. (Preprint) proved the Rigid Synchrony

Theorem by a completely different method.

For completeness, we restate their result here in their notation, which is straightforward,

although different from that used elsewhere in this thesis.

Theorem 9.4.1 (Rigid Synchrony Theorem). Suppose Z0 ptq is a hyperbolic periodic solution

of 9Z � F pZq. Then the coloring associated to ∆ pZ0q is rigid if and only if it is balanced.

In brief, their method of proof involved proving that the space of admissible perturbations

of a system of periodic hyperbolic ODEs on a network was infinite-dimensional, whereas
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9 The Rigid Synchrony Theorem

the synchrony-preserving perturbations of non-balanced patterns of synchrony were finite-

dimensional (they lie within a particular finite-dimensional subspace) — showing that there

must be some infinite-dimensional ‘remaining’ space of available perturbations which are

synchrony-breaking.

It would be interesting (and useful!) to see if this method could be adapted to prove a

conjecture such as conjecture 9.3.1, since this is the approach to the (unproved) Rigid Phase

Conjecture which we examine in the next chapter.
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10 The Rigid Phase Conjecture

The previous chapter dealt with the rigid synchrony theorem, proving that it followed from

what appears to be a reasonable conjecture in a fundamentally different way to the existing

proof by Golubitsky et al. (Preprint). We now proceed to apply the same approach to the

rigid phase conjecture: in fact, the conjecture we use in this chapter is very close to the

conjecture in the previous chapter. Our proof proceeds in exactly the same way as the one

given in that chapter. This scheme has two benefits. Firstly, it seems likely that a proof

of conjecture 9.3.1 from the previous chapter — for example, using some of the techniques

of Golubitsky et al. (Preprint) — would generalise to a proof of the conjecture given in

this chapter, which would mean that the results presented in this chapter prove the Rigid

Phase Conjecture with no further work. Secondly, even if the method of proof of the Rigid

Synchrony Theorem does not generalise, the rigid phase theorem will still hold, by the same

proof given here, provided another proof of the conjecture in this chapter can be found.

Our technique, in overview, is to take a trajectory x of a system of differential equations F

on a network N with an unbalanced pattern of phase, and duplicate that network, putting a

trajectory on the duplicate network equal to the original trajectory, phase-shifted so that cells

in the duplicate network are synchronous with cells in the original. We would like to then use

the rigid synchrony theorem discussed in the previous chapter to complete the proof. The
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10 The Rigid Phase Conjecture

complication arises as the trajectory on the union of the network and its duplicate will not be

hyperbolic. However, it will still satisfy a modified version of the hyperbolic property, which

we examine in detail here.

Recall the statement of the rigid phase conjecture.

Conjecture 10.0.2 (Rigid Phase Conjecture). Given a network N and an admissible system

of differential equations F on N with a hyperbolic trajectory x with period Θ, and θ P r0,Θq,

then the rigid θ–shift relation W9 θx of x must be a balanced forward relation over �x on N .

Section 4 of Golubitsky et al. (2005) gives an example of ‘multirhythms’ (A Three-Cell Ring

Coupled to a Two-Cell Ring), which seem at first to cause problems with the rigid phase

conjecture. We shall allay these fears by restating the example here, and using it as an

illustration of our method. See figure 10.1.

5

1

2

4

3

Figure 10.1: An example network, with 5 cells, as given in section 3 of Golubitsky et al.
(2005). As before, edge types are shown by arrowhead styles.

The cells in the three-cell ring (1, 2, 3) are assumed to be a different (cell) type from those

in the two-cell ring (4, 5). The general system of differential equations which is admissible
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over this network is:

9x1 � f px1;x2, y4, y5q

9x2 � f px2;x3, y4, y5q

9x3 � f px3;x1, y4, y5q

9y4 � g py4; y5, x1, x2, x3q

9y5 � g py5; y4, x1, x2, x3q

The cell trajectories are labelled x and y to emphasise the two rings that make up this

network.

Golubitsky et al. (2005) goes on to show that this network can exhibit a multirhythm:

x ptq �
�
x1 ptq , x1

�
t� 1

3
Θ
�
, x1

�
t� 2

3
Θ
�
, y4 ptq , y4

�
t� 1

2
Θ
��

, where x1 ptq � x1

�
t� 1

2
Θ
�

and y4 ptq � y4

�
t� 1

3
Θ
�
. We shall continue to work with this solution throughout this

chapter.

10.1 Network Unions

We introduce a simple, but powerful, operation on networks, which we will use in our results

on the rigid phase conjecture.

Definition 10.1.1. Suppose N is any network, and a is any symbol — for example, a P N.

Then let Na be a network with cell set C pN q � tau, and edge set

Þ pc, aq Ñ
t
pd, aq

��� �cÑ
t
d
	
P E pN q ß ; let pc, aq �Na pd, aq precisely when c �N d. In

this way, Na is an isomorphic, but disjoint, copy of N .

Definition 10.1.2. Suppose M,N are disjoint networks. Then their union M Y N is

defined in the obvious way to be a network with cell and edge sets formed from the union of

the cell and edge sets ofM and N . In this general case, the types of edges may be marked,
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10 The Rigid Phase Conjecture

and the cell equivalence relation defined, so that no cell or edge of M is equivalent to one

of N .

To extend upon this definition, suppose N is a network. For a � b, we let NaYb be

the network Na Y Nb, with the additional cell equivalences given by pc, aq �C pc, bq and

transitivity, and edge types left unmarked so that
�
pc, aq Ñ

t
pd, aq

	
�E

�
pc, bq Ñ

t
pd, bq

	
.

In the case of our example network, figure 10.1, N1Y2 is the network pictured in figure 10.2.

5,1

3,1

1,1

2,1

4,1 5,2

3,2

1,2

4,2

2,2

Figure 10.2: The network N1Y2, for N as shown in figure 10.1. N1 is shown on the left, N2

on the right.

Given a choice of phase spaces, an admissible system of differential equations, or a trajectory,

on N , we may immediately form a choice of phase spaces, admissible system of differential

equations or trajectory on Na by the trivial isomorphism. We can also form a choice of phase

spaces, admissible system of differential equations or trajectory on NaYb in the same way,

such that the restrictions of these constructions to Na or Nb give the same objects as those

constructed by the isomorphism.

Remark 10.1.3. Let F be an admissible system of differential equations over a (con-

nected) network N , and x a trajectory of F . Let F1Y2 be the admissible system of dif-

ferential equations on N1Y2 as defined above. Define xθ ptq � x pt� θq for all t P R.
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Then xθ is also a trajectory of F on N . Since N1Y2 has two connected components,

each isomorphic to N , then the function x0,θ : R Ñ P pN1Y2q given by x0,θ
pc,1q � xc,

x0,θ
pc,2q � xθc is a trajectory of F1Y2. For example, let θ � Θ{2 in our standard exam-

ple of figure 10.1. Then x0,θ is a trajectory on the network N1Y2 in figure 10.2, de-

fined as follows: x�,1 �
�
x1 ptq , x1

�
t� 1

3
Θ
�
, x1

�
t� 2

3
Θ
�
, y4 ptq , y4

�
t� 1

2
Θ
��

, as above;

x�,2 ptq �
�
x1

�
t� 1

2
Θ
�
, x1

�
t� 5

6
Θ
�
, x1

�
t� 7

6
Θ
�
, y4

�
t� 1

2
Θ
�
, y4 pt�Θq

�
. Recall that

x1 ptq � x1

�
t� 1

2
Θ
�

and y4 ptq � y4

�
t� 1

3
Θ
�
: this means that the input sets of cells

1 to 3 are phase shifted by 1
3
Θ and 2

3
Θ, and similarly the input sets of cells 4 and 5 are

shifted by 1
2
Θ, even though the phase relations written here do not suggest that.

Remark 10.1.4. As remarked above, given a trajectory x of an admissible system of differ-

ential equations F on N , we may form a trajectory x0,θ of F1Y2. However, even if x is a

hyperbolic trajectory, x0,θ is certainly not hyperbolic: duplicating the network and trajectory

in this way duplicates the eigenvalues of the Poincaré map of the trajectory, and so the single

eigenvalue on the unit circle becomes two eigenvalues on the unit circle. In terms of the

hyperbolic property, notice that even the unperturbed F1Y2 has other trajectories x̂0,θ near

x0,θ: let x̂0,θ � x0,θ�η for sufficiently small η. In the next section, we will outline another

approach to hyperbolicity and rigidity that allows the use of an extended version of the rigid

synchrony theorem — really, an extended version of conjecture 9.3.1.

10.2 Hyperbolicity in Disjoint Networks

Recall that if a given trajectory of a system of ODEs on a network satisfies the hyperbolic

property, property 8.1.1, then a perturbation of the system perturbs the trajectory ‘uniquely’,

at least when considering trajectories of the new system near the original trajectory. Note

119



10 The Rigid Phase Conjecture

that in the absence of specified initial conditions, any solution may be phase-shifted by any

amount to create another solution. Assuming the solution x to be uniformly continuous, for

every ε ¡ 0 there is some T ¡ 0 such that for τ   T we have d px pτ � tq , x ptqq   ε for all

t. Hence we may always find ‘extra’ solutions in any neighbourhood of a given solution x.

In order to say that a solution in ‘unique’ in this case, we form an equivalence relation

between phase-shifted solutions: x � y if there is some θ P R such that x ptq � y pt� θq; we

understand that the solution of the perturbed equation is unique (in some neighbourhood of

the original solution) up to equivalence under �.

In the case of a network with (at least) two connected components N1 and N2, this equiva-

lence is not sufficient, since the solution may be phase-shifted independently on the pieces N1

and N2: that is, for a solution x � px1;x2q to an admissible system of ODEs, ε, T as before,

we have that for all τ1, τ2   T , xτ � px1 pτ1 � �q ;x2 pτ2 � �qq must be a solution of the same

system of ODEs. In this case, the equivalence relation must be defined by x � y if Dθ1, θ2

such that px1 ptq ;x2 ptqq � py1 pt� θ1q ; y2 pt� θ2qq. Then we can consider uniqueness of

solutions up to equivalence by �.

This ‘disjoint phase-shift identification’ process extends easily to networks with any number

of disjoint pieces. With this relation in hand, we can now state a version of the hyperbolic

property for networks with disjoint pieces.

Property 10.2.1 (Disjoint Hyperbolic Property). Let F1, F2 be two systems of differential

equations, and F � pF1;F2q the combined system. Let x � px1;x2q be a Θ–periodic

trajectory of F . Then x has the disjoint hyperbolic property if there is some ε0 ¡ 0 such

that for all ε P p0, ε0q, there exist δ, η ¡ 0 such that for all ε–perturbations F̂ of F , there

exists a trajectory x̂ � px̂1; x̂2q of F̂ which is δ–close to x, and this trajectory is unique up to

disjoint phase-shift identification � as above; further, this x̂ has period Θ̂ P pΘ� η,Θ� ηq.
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This property allows us to use an extended version of the first paragraph of conjecture 9.3.1

on networks with more than one connected component.

Definition 10.2.2. For a network with more than one connected component with an admis-

sible system of ODEs F which has a trajectory x with the disjoint hyperbolic property, call

a pattern of synchrony �x of x component-rigid if for every admissible perturbation F̂ of F

the unique nearby �–class of trajectories of F̂ contains some x̂ with pattern of synchrony

�x̂ ¥ �x.

Conjecture 10.2.3. Given a periodic trajectory x of a system of differential equations F

which is admissible over some network N of two connected components N1,N2, suppose

the pattern of synchrony is unbalanced but component-rigid. Then there is an admissible

perturbation F̂ of F with an �–class of trajectories X̂ near x such that �x̂ �¥ �x for all x̂

in X̂.

Notice that this conjecture is stronger than conjecture 9.3.1, although if the expected struc-

ture is followed for proving that conjecture then the proof will involve making a perturbation

which breaks synchrony on some time interval, but leaves the synchrony intact elsewhere

(compare with the Patch Lemma from Stewart and Parker (December 2007)). Then a

phase shift which ‘unbroke’ the synchrony where it had been broken would break the intact

synchrony — and so no phase shift could completely restore the synchrony.

We now examine the case where we duplicate a network with a hyperbolic trajectory; we

show that the trajectory given by lifting satisfies the disjoint hyperbolic property.

Proposition 10.2.4. Let N be a network with an admissible system of ODEs F ; let x

be a pseudo-hyperbolic trajectory of F . Define N1Y2 and F1Y2 as before. Then the lifted

trajectory x1Y2 � px;x pθ � �qq is a trajectory of F1Y2 that satisfies the disjoint hyperbolic
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property.

Proof. That x1Y2 is a trajectory of F1Y2 is clear. Since x is pseudo-hyperbolic, it has some

hyperbolic bound ε. Let θ be given, so that x1Y2 is uniquely defined. Then for any given

F̂1Y2 which is an admissible ε–perturbation of F1Y2, admissibility ensures that the projection

F̂ onto N is a well-defined ε–perturbation of F . Therefore by the pseudo-hyperbolicity

of x, F̂ has some unique trajectory x̂ near x; lifting to N1Y2 yields a family of trajectories

x̂1Y2 � px̂ pθ1 � �q ; x̂ pθ2 � �qq. Any other trajectory x̃1Y2 of F̂1Y2 also projects to trajectories

x̃1 and x̃2 of F̂ : if x̃1Y2 is close to x1Y2 then both of these trajectories are close to x (possibly

after a phase-shift). Hence these trajectories must both be (phase-shifted versions of) the

unique trajectory x̂ near x. Thus x̃1Y2 � px̂1 pθ1 � �q ; x̂2 pθ2 � �qq, as required.

10.3 Programme for Proof of the Rigid Phase

Conjecture

We now proceed to show that the Rigid Phase Conjecture follows from conjecture 10.2.3.

Once again, the proof that balance implies rigidity is trivial, but a technically intricate proof

is needed for the other direction.

Lemma 10.3.1. Balanced phase-shift relations are rigid.

Proof. Let x be a hyperbolic trajectory of F on N , let �x be the synchrony relation of

x, and  x be some balanced phase-shift relation of x with phase shift θ. Let F̂ be an

admissible perturbation of F with trajectory x̂ near x. Suppose there exist c, d P C pN q such

that c  x̂ d, but c ¢x̂ d. Then let x̃ be such that x̃c ptq � x̂d pt� θq. This gives a second

trajectory of F̂ which is close to x, which is impossible since x is hyperbolic.
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Proposition 10.3.2. Assume conjecture 10.2.3 holds. Then rigid phase-shift relations are

balanced.

Proof. Let F be an admissible system of differential equations on a network N with Θ–

periodic hyperbolic trajectory x. Perturb x to break any fragile synchronies; we now assume

that the pattern of synchrony of x is rigid.

Let θ P r0,Θq be given, and suppose that the phase shift relation of x of phase θ is un-

balanced. Let   denote this relation. Then there are cells c, d P N such that c   d but

I pcq ¢1
x I pdq.

Let N1Y2, F1Y2, x1Y2 be as in proposition 10.2.4 — that is, x1Y2 � px;x pθ � �qq: by

that proposition, x1Y2 satisfies the disjoint hyperbolic property. Also d1 is synchronous with

c2, but I pd1q �1Y2 I pc2q (as usual, we use the shortened notation �1Y2 to avoid stacked

subscripts). By conjecture 10.2.3, there is an admissible perturbation which breaks the

synchrony �1Y2 of x1Y2. Call the perturbed function F̂1Y2 and the trajectory x̂1Y2 — call

the broken synchrony �̂1Y2. This perturbation cannot break the synchronies internal to x1, x2

since we ensured these were rigid to start with. Hence there are some c1, d1 P N such that

c12 �1Y2 d
1
1 but ˆc12 � d11. (These c1, d1 could be c, d, but this is not neccesarily the case.)

Now the perturbed trajectories x̂1, x̂2 on the pieces of the network are perturbed versions of

(phase-shifted copies of) x. Undo the phase shift by letting x̂ � x̂1 (this copy is not phase-

shifted) and x̂1 � x̂2 p� � θq. These trajectories of F̂ on N are both close to x. Therefore

they are equal (up to a small phase shift η), by the hyperbolicity of x. Hence synchrony of

c12, d
1
1 in x̂1Y2 is equivalent to phase shift of c1, d1 in x̂ by a shift θ̂ � θ � η near θ.

So c1 is phase related to d1 in x, but not in x̂, proving that the phase relation is fragile, as

required.
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Theorem 10.3.3 (Limited Rigid Phase Theorem). Assume conjecture 10.2.3 holds. Then

the Rigid Phase Conjecture is true: we spell out what this means.

Let N be a network and F an admissible system of differential equations on N with a

hyperbolic trajectory x of period Θ. Let θ P r0,Θq, then the rigid θ–shift relation W9 θx of x

must be the maximal balanced refinement of Wθ
x (as a forward relation over �x on N ).

Proof. We follow the same line of argument as theorem 9.3.3. We assume that conjec-

ture 10.2.3 holds throughout this proof.

Let �x denote the maximal balanced refinement of Wθ
x. This relation �x is a pattern of

θ–shift for x, and is balanced. Hence �x is a rigid θ–shift relation for x, by lemma 10.3.1,

so �x ¤W9 θx, by maximality of W9 θx as a rigid θ–shift relation.

All rigid patterns of phase shift for x are balanced, by proposition 10.3.2 (we use conjec-

ture 10.2.3 here), and all these patterns must refine Wθ
x. Thus �x ¥ � for all patterns of

θ–shift  , by maximality of �x as a balanced forward relation: in particular, �x ¥W9 θx.

This shows that �x �W9 θx — that is, the maximal balanced forward relation refining Wθ
x is

the rigid pattern of θ–shift of x — and completes the proof of the Rigid Phase Theorem.
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11 Further Directions

Directions for further study have been discussed throughout the thesis, as natural extensions

of included material. This chapter concludes the thesis by examining some other directions

which do not follow directly from the individual topics examined in detail in the previous

chapters.

The first of these topics concerns an application of coupled-cell networks to the models

introduced by Nowak (1990); Nowak and May (1992); Lieberman, Hauert, and Nowak (2005).

There follow comments on expanding the idea of multiplicity; these ideas are foreshadowed

in Aldis (2005), and should not be too complicated to incorporate into the formalism used

in this thesis. After a brief reminder of the category Tree, we briefly consider Markov chains

as another potential application of coupled-cell networks.

11.1 Network Models for Population Dynamics

Nowak (1990); Nowak and May (1992); Lieberman et al. (2005) describe models for popu-

lation dynamics based on grids or interconnected networks of cells. These ‘Nowak models’

should be easily described in terms of our coupled-cell networks. In contrast to the systems

of ODEs in this thesis, these Nowak models are discrete-time in nature. The analogue of
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cell phase space is a finite set S of ‘cell states’ (which has no necessary structure, unlike our

vector space phase spaces): the product of these sets, analogous to network phase space,

would be the set of network states — a point in this space s : C pN q Ñ S could be called

a ‘network state’. The analogue of the cell functions fc would then be some rule regarding

the updating of the state of cell c. Nowak’s models make this function ‘choose’ from among

the states of the inputs of c.

Nowak’s results make predictions on the eventual states of these systems. We would expect

the symmetries of these states to follow similar patterns to those found in coupled-cell

networks representing ODEs, as examined in this thesis: the ‘generic’ symmetries should be

derived from balanced equivalence relations — or, to put it another way, from symmetries of

a balanced quotient network.

We also conjecture that in the limit (as time t Ñ ∞), some collections of interconnected

cells will (almost surely) attain the same state, and therefore equilibrium: we suggest the

name ‘homogenised component’ for these collections. We would expect these homogenised

to be the upstream fully-connected components of the network. The probability distribution

of the eventual states of these components could then be considered.

Assuming these suggestions play out well, we present two more possible routes for further

study of these Nowak models.

Nonhomogenised Behaviour

We have suggested the classification of distribution of states on homogenised components.

Another interesting question is the distribution of states on non-homogenised components.

It is clear that for an initial network state with a relation � defined by c � d where the
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initial states of cells c and d are equal, cells c, d such that c �∞
� d will have identical

(stochastic) behaviour. We conjecture that small (admissible) changes in edge weights can

ensure that other identical behaviour is not preserved. Thus the relation of rigidly identical

future behaviour would be the maximal balanced equivalence relation.

A Local Theory of Nowak Models

We now discuss a possible way of reducing the complexity of a Nowak process on a network.

Let N be a network. Let r P N∞ be given and consider a neighbourhood Br pcq of radius r

around each cell in N . If N has some symmetry (possibly a groupoid symmetry, c �n
N d),

then several of these neighbourhoods will be isomorphic (or bunched isomorphic). This gives

a concept we call the ‘balance metric’: for each pair of cells, c, d, let d pc, dq be 0 if c � d,

otherwise let it be 1{n, where n is the smallest integer such that c �n
N d.

For a given network state s : C pN q Ñ S, each of these neighbourhoods Br pxq will have

its own state sr pcq, which is derived from s by assigning the same states to the same

cells. Now, several combinations of network layout and network state will have identical

sets t sr pcq | c P C pN q u. As the network’s state performs the Markov process dictated by

the Nowak model, this neighbourhood state set will have its own random walk. A question

for future study is: to what extent does a value of the neighbourhood state set at some

time t determine the future (stochastic) behaviour of its random walk? Nowak and May

(1992) shows by simulation that in the case r � 0, where each neighbourhood consists of

only one cell, the answer to this question is “not very much” — this r � 0 case is the one

which discards all spatial structure, so it is apparent that some spatial structure is important.

However, when r �∞, the neighbourhood of a cell contains its entire input tree, and so the

behaviour is determined by the current state; the neighbourhood state set follows a Markov
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chain itself. A question which occurs naturally is: how does this transition occur? Does the

accuracy of this neighbourhood model increase faster than its complexity? If so, this would

form a good basis for approximation in simulated Nowak models.

11.2 Non-natural Multiplicities

In this thesis, we have considered multisets as the natural objects over which to form a space

(the multispace). However, one could go further, and define ‘weighted sets’ to be sets of

objects with multiplicities, like multisets, but where the multiplicities are drawn from some

group-like structure, instead of restricting them to be natural numbers. The most obvious

extensions are to the rational and negative numbers, and to real numbers. However, it would

be possible to take multiplicities from any abelian groupoid.

11.2.1 Bunching

The notion of bunching and bunched tree equivalence was touched on briefly in chapter 4, and

then set aside for the remainder of the thesis to simplify the discussion: having natural-valued

multiplicities meant that ignoring bunching made no difference to the structures we obtained.

However, as our multiplicities become more general, it becomes essential to consider bunching

again. Having examined the situation in this simplified ‘unbunched’ system, it would be useful

to consider the technicalities of bunching: this would involve using multispaces themselves

more thoroughly, removing most of the underlying spaces which are used in this thesis.
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11.2.2 A Category–Theoretic ‘Tree Nonsense’

With the use of bunching, we should return to the idea of a category of trees. In chapter 3,

we touched on the category Bunched Tree, which has trees as its objects and bunching

operations as its arrows. It should be possible to frame much of the content of this thesis in

terms of this category.

11.3 Balanced Equivalence Relations on Markov Chains

An interesting question arises with reference to Markov chains. Given a network N , a Markov

chain is admissible over N if the states of the chain can be identified with the cells of the

network, with edges of the network showing possible state transitions. We conjecture that

there is a type of equivalence relation on a network, called a ‘Markov-balanced’ equivalence

relation, which is a balanced equivalence relation with certain extra properties such that if

M is a Markov process defined on a network N , and � is a ‘Markov-balanced’ equivalence

relation, then there is a Markov process M� on the balanced quotient N {{� such that the

behaviour of M� is closely related to that of M .

It seems probable that these relations are those balanced equivalence relations which are

also balanced equivalence relations of the network with all edge directions reversed. Further

study would be required to ascertain whether this is in fact the case, and to work out the

combinatorial issues involved in characterising these relations.

Finding a Markov-balanced equivalence relation would obviously help the computational sim-

ulation of Markov chains, as passing to the balanced quotient of a network under such a

relation could dramatically reduce the number of states required in many chains.
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infinite input tree, 15
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ties λ1, . . . , λn, 20

network
countable, 9
finite, 9
homogeneous, 9
isomorphism

with respect to a relation, 10
locally countable, 9
locally finite, 9

network homomorphism, 9
network isomorphism, 9

pattern of θ–shift, 29
phase space, 21
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