
International Journal of Bifurcation and Chaos, Vol. 18, No. 2 (2008) 407–427
c© World Scientific Publishing Company

A POLYNOMIAL TIME ALGORITHM TO
DETERMINE MAXIMAL BALANCED

EQUIVALENCE RELATIONS

JOHN W. ALDIS
Mathematics Institute, University of Warwick,

Coventry CV4 7AL, UK

Received January 24, 2007; Revised August 20, 2007

Following Golubitsky, Stewart, and others, we give definitions of networks and input trees. In
order to make our work as general as possible, we work with a somewhat extended notion
of multiplicity, and introduce the concept of “bunching” of trees. We then define balanced
equivalence relations on networks, and a partial ordering on these relations. Previous work has
shown that there is a maximal balanced equivalence relation on networks of certain classes:
we provide a different style of proof which gives this result for any network. We define two
algorithms to determine this relation in practice on a given finite network — one for use with
networks with all multiplicities equal, and a second for the more general case. We then provide
illustrative examples of each algorithm in use. We show both of these algorithms to be quartic
in the size of the given network.

Keywords: Network; coupled cell; balance; lattice; polynomial time algorithm.

1. Introduction

As described in [Stewart et al., 2003; Golubitsky
et al., 2005], a coupled cell network is, informally, a
network of nodes or cells, each of which has a value
associated with it (typically a finite-dimensional
real vector). These cells are connected or “cou-
pled” together by edges. One application of these
networks [Golubitsky et al., 2004] is to model sys-
tems of differential equations of the form ẋ = f(x).
Here, the cells model dynamical systems and the
edges model couplings between these systems. The
values on the cells 0, 1, . . . ,N represent the states
x0, x1, . . . , xN of their associated systems, and x =
(x0, x1, . . . , xN) is the overall state of the whole
system. The connections shown by the edges
describe how these values affect each others’ rates of
change. Several uses of this model are referenced
in [Golubitsky & Stewart, 2006]. The general for-
mulation we consider here permits multiple edges,
as well as edges from a cell to itself.

Stewart et al. [2003], Golubitsky et al. [2005]
showed that when a coupled cell network represent-
ing a system of differential equations has a structure
and initial conditions with “local” symmetries given
by a kind of relation called a balanced equivalence
relation, then these symmetries are maintained over
time. The converse is also true with suitable techni-
cal hypotheses [Stewart et al., 2003, Theorem 6.5].
Thus we may determine striking, possibly quanti-
tative, symmetry properties of the solution of a set
of differential equations without finding any “solu-
tion” in the usual sense. The relation of equality
is trivially balanced, as we shall see. A natural
question is whether a given network has any non-
trivial balanced equivalence relations. We give an
algorithm to answer this question, and show that
it runs in polynomial time on total number of cells
and edges.

The remainder of this paper is structured as
follows.

407

408 J. W. Aldis

Sections 2–4 are largely devoted to definitions,
introduction of notation, and preliminary results.
The notation here gets somewhat involved; this is
fairly usual for this field, and happens because we
are defining several rather similar concepts, which
therefore have similar (but distinct) notation.

In Sec. 3, we give definitions of networks and
trees, and “bunching” of trees.

In Sec. 4 we define input trees, homomorphisms
on input trees and input tree equivalence, and use
these to define balanced equivalence relations on
networks. We then describe a partial ordering on
these relations. It is known [Stewart, 2007] that
the set of balanced equivalence relations on a given
locally finite network forms a complete lattice in
the sense of Davey and Priestley [1990]. We give
a more elementary proof that the set of balanced
equivalence relations of an arbitrary network forms
a complete lattice. The minimal element of this lat-
tice is equality; we describe the maximal element
here, answering in theory the question of existence
of nontrivial balanced equivalence relations.

In Sec. 5 we describe an algorithm to determine
this maximal balanced relation on a given network.
We prove it to be correct, and to execute in poly-
nomial time. We do this first in the case where the
network is unitary (that is, all edges have a multi-
plicity of 1) and then extend to the more general
case, taking multiplicity into account.

In this paper, we have adopted a generalized
form of “multiplicity” as a real number. The reader
with an interest in ODEs with all coefficients equal
to 1 can ignore multiplicities (in effect, assuming
all multiplicities to be equal to 1) and also ignore
the notion of “bunching”, and the second algorithm.
The reader with an interest in ODEs with natu-
ral number coefficients has two options. An arrow
in the derived network with multiplicity n can be
replaced with n arrows of the same type with mul-
tiplicity 1, reducing this case to the previous one
(multiple identical arrows are handled transpar-
ently by the algorithm), but increasing the run-
ning time to be a function of the total multiplicity.
Alternatively, consider multiplicities and bunching
as described in the second algorithm. For problems
with (positive) rational multiplicities it is possible
to multiply all arrows by the lowest common mul-
tiple of the denominators, and then replace arrows
as in the natural number case. However, this leads
to a huge problem size, so it is better to consider
bunching. Certain problems, such as Markov pro-
cess networks, can give irrational multiplicities, in

which case even this “multiplication and replace-
ment” option is no longer available, forcing the use
of the second algorithm. Thus this generalized for-
malism has practical benefits, as well as being con-
ceptually “tidy”. In fact, although only described
as a real number in this paper, multiplicities from
any abelian group can be handled as described
here, and this generalization is potentially useful
in connection with such issues as the stability of
equilibria.

2. Fundamentals

Here we briefly define some pieces of set theory and
relation terminology.

A multiset is, informally, a set-like object X
such that each item described in the definition of
X gives precisely one element of X: although the
order of representation of X is ignored, the number
of times each distinct element appears is preserved.
Effectively, a multiset X is a function from some
index set to the “content set” of distinct elements
in X, where two multisets A and B are considered
equal if there is a bijection φ from the index set
of A to that of B such that Aφ = B, treating A
and B as functions. When defining a multiset, we
use one of the notations X = x, x, y, z and X =
f(y)|y ∈ Y,C(y) for some condition C, as when

defining a set. Crucially, when using the second of
these notations, there is one element of X for every
element of Y for which C is true, even if f is not
injective.

Given two equivalence relations ∼ and ≈ on a
set S, ∼ is a refinement of ≈ if x ∼ y ⇒ x ≈ y for
x, y ∈ S.

The equivalence relation % on any set S is
defined as: x% y ∀x, y ∈ S.

The term lattice is used here as in [Davey &
Priestley, 1990], to mean a partially ordered set X
in which any two elements x, y ∈ X have a unique
join, denoted x ∨ y, and meet, denoted x ∧ y.

A lattice X is complete if every subset Y ⊆ X
has a unique greatest lower bound, or meet, and a
unique least upper bound, or join. We denote the
meet of Y by

∧
Y and its join by

∨
Y . In particular,

any finite lattice is complete, and a complete lattice
has a maximal and a minimal element.

The dual of Theorem 2.16 from Davey and
Priestley [1990] will be useful; we give this dual
here:

Theorem 2.1. Let X be a nonempty partially
ordered set. Then the following properties are

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 409

equivalent:

(1) X is a complete lattice.
(2)

∨
Y exists for all Y ⊆ X.

(3) X has a minimal element, and
∨

Y exists for
all Y ⊂ X with Y += ∅.

We define a partial order ≤ on the equivalence
relations on a given set S by ∼ ≤ ≈ if ∼ is a refine-
ment of ≈. Naturally, we use the symbol ≥ for the
opposite order. It should be clear that = is the min-
imal relation on any set S, and % is the maximal
relation. In fact, the set of equivalence relations on
S is a complete lattice. The meet

∧
Y of a set Y of

equivalence relations on S is their intersection when
considered as subsets of S × S: that is, x

∧
Y y if

x ∼ y for all ∼ ∈ Y . The union of a set Y of equiv-
alence relations may not be a transitive relation,
but the join

∨
Y of Y is given by the transitive

closure of this union: x
∨

Y y if there is a chain
x = x0 ∼1 x1 ∼2 · · · ∼n xn = y with xi ∈ S
and ∼i ∈ Y for 1 ≤ i ≤ n.

3. Networks

We define “networks” in a similar way to that in
which coupled cell networks are defined in [Golubit-
sky et al., 2005]. However, as mentioned in Sec. 1,
we permit edges to have a real-valued multiplicity,
not just a positive integer multiplicity.

3.1. Network terminology

A network N = (C,E) is a set of cells C and a
set of edges E. Each edge is a tuple e = (c, d,λ, i),
where c and d are cells, called the tail and head
of e respectively, and λ ∈ R is called the multi-
plicity of e. The number i ∈ I (for some set I) is
called the identifying mark of e — it is chosen to
allow multiple otherwise equal edges to exist inde-
pendently in the set E, and has no semantic value.
The function η(e) gives the head of an edge e, and
τ(e) gives the tail of an edge e. The head and tail
of an edge are collectively called its ends. The nota-
tion |e| denotes the multiplicity of an edge e, so
for the edge e = (c, d,λ, i), we have η(e) = d and
τ(e) = c. In particular, and in contrast to [Stewart
et al., 2003], we permit the case c = d: such edges
are called loops. Figure 1 shows a diagram represen-
tation of a network. Networks where all edges have
multiplicity 1 are called unitary. See Fig. 2 for an
example of a unitary network.

In addition to the sets C,E, the network is
equipped with an equivalence relation ∼C on C

1 2

5
4

3

b
c

g

d

h

e f

a

4
1

2

2

6

π
2

3
2/

Fig. 1. A (finite, connected) network with five cells, C =
{1, 2, 3, 4, 5} and eight edges, E = {a, b, c, d, e, f, g, h}. h is
a loop. As shown by the shapes of cells and edges, 1 ∼C 3,
2 ∼C 5; b ∼E c ∼E e ∼E g ∼E h, also d ∼E f .

which assigns each cell c a cell type given by
its equivalence class, [c], and an equivalence rela-
tion ∼E on E which similarly assigns each edge e
an edge type [e]. In diagrams, such as Fig. 1, cells
that are ∼C-equivalent are drawn with the same
shape of symbol (circle, square etc.) and edges that
are ∼E-equivalent are drawn with the same style of
arrow (solid, dashed, dotted etc.). Where we wish
to consider both of these relations together, we may
use ∼N to denote ∼C ∪ ∼E. There are at most |C|
cell and |E| edge equivalence classes: we consider
only networks with a finite number of cell and edge
types, even where C or E are infinite sets. Enumer-
ate each of these equivalence class sets, {[c]|c ∈ C}
and {[e]|e ∈ E}. Denote the number associated with
[c] by [[c]] and similarly for [e] and [[e]]. A network
with only one cell type and one edge type, as in
Fig. 2, is called a homogeneous network. The triple
(c, d,λ) is called the signature of e = (c, d,λ, i). Two

1

23

4

5 6

a

be

d

c

f

g

h

Fig. 2. A unitary, homogeneous network with six cells and
eight edges.

410 J. W. Aldis

edges e, f with equal signatures are called identical,
and we write e ≡ f .

Networks with a countable or finite number
of cells and edges are called countable or finite
networks, respectively. Networks are called locally
countable or locally finite if they have only a count-
able or finite set of edges meeting any given cell,
that is, for all cells c ∈ C, the set {e ∈ E|η(e) = c
or τ(e) = c} is countable or finite, respectively. We
shall consider only countable, locally finite, net-
works. (We take the term “countable” to include
“finite”.)

Given two networks N = (C,E),M = (D,F),
a network homomorphism φ : N → M is a pair of
functions C → D and E → F , both denoted φ, such
that:

(1) φ preserves the type classes of cells and edges:
if c ∼C d and e ∼E f , then φ(c) ∼D φ(d) and
φ(e) ∼F φ(f).

(2) φ preserves network structure: if e is an edge in
N with multiplicity λ, head h and tail t, then
φ(e) is an edge in M with multiplicity λ, head
φ(h) and tail φ(t).

A network isomorphism is a bijective network
homomorphism.

Given a network N , let ∼ denote a pair of
(equivalence) relations, one on the cells of N , the
other on its edges. We call this kind of relation pair
an (equivalence) relation on N . For example, ∼N is
an equivalence relation on N .

Given two networks N ,M, let ∼ denote a pair
of (equivalence) relations, one on the disjoint union
of the cell sets of N and M, the other on the disjoint
union of their edge sets. We call this kind of relation
pair an (equivalence) relation across N and M.

Let ∼ be a relation across two networks N =
(C,E) and M = (D,F). We say N is isomorphic
to M with respect to ∼ if there is an isomorphism
F : N

∼=→ M which preserves equivalence classes
under ∼ — that is, F (x) ∼ x for cells and edges x
in N . We denote this by N ∼=∼ M.

3.2. Trees

Two cells c, d in a network are connected if there
is a sequence of cells c = c0, c1, . . . , cn = d such
that for each i there is an edge with ci, ci+1 as its
ends. A connected network is a network whose cells
are pairwise connected. We define a metric d on the
cells of a network. If c, d are connected, then d(c, d)
is the smallest n such that c = c0, c1, . . . , cn = d is a

1

3

7 8 9

2

6

5

11

10

4

cba

e f g h i

j

d

Fig. 3. A tree with root 1 and leaves 6, 7, 8, 9, 11. Cells
2, 3, 4, 5 are at generation 1; 6, 7, 8, 9, 10 at generation 2 and
11 is at generation 3; the depth of this tree is 3.

sequence of cells connecting c and d. If c, d are not
connected, d(c, d) = ∞.

A tree is a connected network which has some
cell c0, called the root, such that:

(1) There is no edge with c0 as its tail.
(2) Given any other cell c += c0, there is a unique

edge with c as its tail.

A leaf of a tree is a cell c such that there is no
edge with c as its head. The generation of a cell c in
a tree is the distance d(c0, c). The depth of a tree T ,
depth(T), is the maximal generation of cells in the
tree. If there are cells in T at generation n for all
n ∈ N, then we define depth(T) = ∞. See Fig. 3.

Given a tree T containing some cell c, the sub-
tree of T rooted at c, T(c), is the tree containing all
cells d of T which have a directed path from d to
c in T , and all the edges used in such paths. See
Fig. 4.

Lemma 3.1. Any network homomorphism F
between trees T ,U (including infinite trees) must
take a cell at the mth generation of T to the mth
generation of U , that is, tree homomorphisms pre-
serve generation.

8 9

4

g h

Fig. 4. The subtree of Fig. 3 rooted at 4.

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 411

Proof. Let T and U be trees, and let F be a net-
work (tree) homomorphism between them. The root
of T is the unique cell c0 which does not appear as
the tail of some edge in T , and the root of U is
similarly the cell d0 which does not appear as a tail
in U . So F , being a homomorphism, must map c0

to d0. Let c be a cell at the mth generation of T .
Since T is a tree with root c0, there is a unique
(directed) path of length m = d(c, c0) from c to c0

in T . Under F , this maps to a path from the cell
d = F (c) to F (c0) = d0, the root of U . Any shorter
path from d to d0 would connect d to d0 in two
distinct ways — this would give some cell in U at the
tail of two distinct edges. This is impossible since U
is a tree. !

3.3. Operations on trees

The restriction of a tree T to depth n, denoted T |n,
is the tree with cells c from T where the genera-
tion of c is at most n, and all edges (c, d,λ, i) from
T where both c and d are of generation at most
n. See Fig. 5. The cell and edge type equivalence
relations ∼C and ∼E on T |n are precisely those on
T , restricted to the cells and edges of T |n. Obvi-
ously, the depth of T |n is at most n: specifically, it
is min{n,depth(T)}, and where the depth of T is
less than or equal to n, we have T |n = T .

Lemma 3.2. For locally finite trees T , the tree T |n
is finite for all n.

Proof. The proof is routine, and omitted. !

Given two trees, T = (C,E) with a leaf c and
U = (D,F) with root d, the join of U to T at c is
a tree with cell set given by the union of C∗ and
D∗ where C∗ = {(c′, 1)|c′ ∈ C}, D∗ = {(d′, 2)|d′ ∈
D\d}, and edge set the union of E∗ and F∗, where

E∗ = {((c1, 1), (c2, 1),λ)|(c1, c2,λ) ∈ E}

1

32 54

cba d

1

3

7 8 9

2

6

5

10

4

cba

e f g h i

d

Fig. 5. The restriction of Fig. 3 to depths 1 (left) and 2 (right).

and

F∗ = {((d1, 2), (d2, 2),λ)|(d1, d2,λ) ∈ F and d1 += d}
∪ {((c, 1), (d2 , 2),λ)|(d, d2 ,λ) ∈ F}

See Fig. 6 for an example. Informally, we ensure
that C and D are disjoint, and then identify c with
d, while keeping all edges the same. Cell and edge
equivalences are, by default, defined as the union
of those of T and U , with the additional condition
that all cells which are equivalent to d in U be-
come equivalent to all cells which are equivalent to
c in T . In this case, no cell in T which is not equiv-
alent to c becomes equivalent to a cell in U , and no
cell in U which is not equivalent to d becomes equiv-
alent to a cell in T . However, as we shall see later,
there are cases when the cell and edge equivalence
relations on T and U are in fact restrictions of a
single pair of equivalence relations ∼C ,∼E on the
unions of the cells and edges of these trees. In that
case, we may take the restrictions of the relations
∼C ,∼E to the join of T and U as the equivalences
on this new tree, again defining (c′, 1) ∼C (d′, 2)
whenever c′ ∼C c and d′ ∼C d.

Let two pairs of trees, (Ti,Ui) for i = 1, 2 be
given. Let (T1,U1) satisfy the conditions for (T ,U)
in the definition of the join of trees, with a leaf c1

of T1 and root d1 of U1. Let f : T1 → T2 and g :
U1 → U2 be homomorphisms of trees, let c2 = f(c1)
and d2 = g(d1). By Lemma 3.1, d2 is the root of
U2. Suppose c2 is a leaf in T2 — for example, if f is
an isomorphism. Then the join of T2 to U2 at c2 is
well-defined. We define the join of f and g at c1 as a
function on the join of T1 and U1 which acts as f on
T1 and as g on U1. The only point in the intersection
of these trees is the leaf c1, identified with d1. f
maps this cell to c2, and g maps it to d2: these cells
are identified in the join of T2 and U2. Thus this join
is a well-defined homomorphism — further, if both

412 J. W. Aldis

1

3

7

2

6

5

8

4

cba

e f g

d

1

3

7 10

2

6

5

8

4,9

cba

e f h i g

d

11

10

9

h i

11

Fig. 6. Trees T (top left) and U (top right) and the join
of T to U at 4. Note that some cells in T are equivalent to
some in U , as shown by shapes (for example, 2 ∼C 11), and
in particular, 4 ∼C 9.

f and g are isomorphisms, then this join is also an
isomorphism.

3.4. Sequences of trees

We now consider sequences of trees, and their limits.
Given a sequence of trees (Ti) such that there is

a sequence of isomorphisms fi : Ti|ni

∼=→ Ti+1|ni for
some sequence (ni) → ∞, we call (Ti) a convergent
sequence. We call (fi) the convergence isomorphism
of (Ti).

Given a convergent sequence of trees (Ti), we
construct T∞ = limi→∞ Ti, the direct limit of (Ti),
as follows. Let T∞ ⊇ Ti for all i, by defining

T∞ =

⋃̇

i∈N
Ci

⋃

i∈N
fi

,

⋃̇

i∈N
Ei

⋃

i∈N
fi

That is, after taking the disjoint unions of cell and
edge sets, we identify all cells and edges mapped to
each other by any of the individual isomorphisms
fi from the convergence isomorphism. The disjoint
unions — of the cells, for example — can be formed
by passing from the set Ci to the set Ci × {i}, and
then the quotient can be formed by an equivalence
relation ∼ in which (c, i) ∼ (fi(c), i+1) for all i. We
generally refer to the cell (c, i) and the edge (e, i)
just as c and e.

Let (Ti), (Ui) be two convergent sequences
of trees with convergence isomorphisms (fi), (gi)
respectively. Given a sequence of functions (Fi :
Ti → Ui) such that, for all cells c and edges e in
Ti, there is some natural number n such that:

Fi+1(fi(c)) = gi(Fi(c))
Fi+1(fi(e)) = gi(Fi(e))

}
for i ≥ n (1)

the direct limit of (Fi) is a function limn→∞ Fn =
F∞ : T∞ → U∞ which takes a cell c in T∞ identi-
fied with a cell ci in Ti (for sufficiently high i) to
the cell d in U∞ identified with di = Fi(ci) in Ui.
Condition 1 ensures that this is well defined.

Lemma 3.3. If F : T → U is a homomorphism
of infinite trees T ,U , then each restriction F |T |n :
T |n → U|n is also a homomorphism. If F is an
isomorphism, so is each F |T |n . Further, if ∼ is an
equivalence relation across T and U such that F
preserves ∼, then each F |T |n preserves the restric-
tion of ∼ to T |n, U|n.

Proof. Tree homomorphisms preserve generation,
so the restriction F |T |n is a well-defined function to
U|n. Since F , as a homomorphism, takes the head
and tail of an edge in T to the head and tail of
its image in U , the same property must hold in the
restriction of F , since the ends of any edge e in a
restriction T |n of T must be the same as the ends
of e in T itself, and thus must be taken to the ends
of F (e) in U which are the ends of F (e) in U|n.

The preservation of generation also ensures that
if F : T → U is surjective, then so is F |T |n : T |n →
U|n, since a cell (or edge) of U at generation m ≤ n
can only be mapped to by F from a cell (or edge)
of T at generation m ≤ n, which is therefore also a
cell (or edge) of T |n. Any restriction of an injective
function is injective, so if F is a bijection, F |T |n is
also. !

The converse to this lemma also holds.

Lemma 3.4. If (Fi : Ti → Ui) is a sequence of tree
homomorphisms for convergent sequences of trees
(Ti), (Ui) as above, then F∞ is also a homo-
morphism, F∞ : T∞ → U∞. If the Fi are iso-
morphisms, then so is F∞.

If ∼ is an equivalence relation across T∞ and
U∞ (and, by restriction, across all trees Ti,Ui) such
that Fi respects ∼ for all i, then so does F∞.

Proof. Let (Fi : Ti → Ui) be a sequence of tree
homomorphisms for convergent sequences of trees

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 413

(Ti), (Ui). Let ci in Ti,Ui denote the cells identified
with a cell c of T∞,U∞ for i ≥ nc ∈ N. Similarly, let
ei denote the edges identified with an edge e, and
ne be the minimal i such that Ti or Ui contains such
an edge.

Consider a specific edge e in T with head η(e) =
c and tail τ(e) = c′. Let the edge f = F∞(e) from
U∞, and cells d = F∞(c) and d′ = F∞(c′).

Let i ≥ ne, so that ei, ci, c′i all exist in Ti. By
application of the convergence isomorphism of (Ti),
ei has head ci and tail c′i. Since Fi is well defined,
Fi(ei) must be an edge in Ui, and Fi(ci), Fi(c′i) must
be cells in Ui. By Condition 1, Fi must take ei, cor-
responding to e, to fi, corresponding to f . Simi-
larly, Fi(ci) = di and Fi(c′i) = d′i. Since Fi is a
homomorphism, fi must have head di and tail d′i.
Thus f must have head d and tail d′, and F∞ is a
homomorphism.

If each Fi is bijective, they have well-defined
inverses — the direct limit of these gives a well-
defined inverse to F∞, which is therefore also bijec-
tive. Thus if each Fi is a tree isomorphism, F∞ is
also an isomorphism.

Suppose ∼ is an equivalence relation across T∞
and U∞, and define ∼ across all Ti,Ui by c ∼ ci,
e ∼ ei for all cells c and edges e of T∞,U∞.
Then if Fi preserves ∼ for some i ≥ nc, we have
c ∼ ci ∼ Fi(ci) = di ∼ d = F∞(c). So F∞ also
preserves ∼. !

Lemma 3.5. For any tree T , T ∼= limn→∞ T |n.

Proof. From the remark in the definition of the
restriction of a tree, this holds trivially for all finite
trees T .

Let T be an infinite tree. Clearly, T =
limn→∞ T . Take the two sequences of trees (Ti), (Ui)
given by Ti = T |i, Ui = T , where the conver-
gence isomorphism of (Ti) is given by the inclu-
sion maps, and that of Ui is the identity map at
each i. Then there is a natural, injective, homo-
morphism Fi : Ti → Ui. This function has limit
F∞ : limi→∞ T |i → T , which is a homomorphism
of trees, by Lemma 3.4. We show this F∞ to be a
bijection. Let T∞ = limi→∞ Ti = limi→∞ T |i. Take
some cell c in T , then it is mapped to by the cell
c itself wherever it appears in T |i. It appears in all
such trees where i ≥ nc, so c is the image of at
least one cell in T∞, containing the cell c from Tnc,
say. So F∞ is surjective. But all these cells c from
Ti mapping to c in T are identified by the inclu-
sion map, which is the convergence isomorphism of

(Ti). Hence c has a unique preimage in T∞, and
is an injection. Thus F∞ : T

∼=→ limn→∞ T |n, as
required. !

3.5. Bunching

In systems modeled by the networks we are defining
here, any set of arrows of the same type between the
same cells is usually considered to be equivalent to
any other set with the same total multiplicity — in
particular, equivalent to a single arrow with appro-
priate multiplicity. Also, identical cells which have
identical inputs will behave identically, and so they
may be considered as one cell — effectively, any
output arrows from one of the identically-behaving
cells can be transferred to the other without affect-
ing the behavior of the network. Transferring all
such arrows, the former cell then has no effect on
the network, and can be removed. To inspect the
value of the removed cell, we may take the value of
the equivalent cell that is left in the network. We
now formalize this process on trees, which is where
we will later use it.

Given a tree T = (C,E) and an equivalence
relation ∼ on T , we define a tree called the bunch-
ing of T with respect to ∼, denoted T //∼. Firstly,
assume T is finite. Define a relation ∼̇ on E by
e ∼̇ f where either e = f , or all of the following:
e ∼ f , c = τ(e) ∼ τ(f) = d and the subtrees
rooted at c, d are isomorphic with respect to ∼ after
being bunched by ∼ — that is, T(c)//∼ ∼=∼ T(d)//∼.
Clearly, this is an inductive definition requiring
descending induction. Now identify edges e, f and
cells τ(e), τ(f) where e ∼̇ f , provided η(e) is identi-
fied with η(f). See Fig. 7. Formally, define a third
relation, ∼̂, between cells and edges:

c ∼̂ d ⇔ c = d or

c = τ(e)
d = τ(f)
e ∼̂ f

e ∼̂ f ⇔ e ∼̇ f and η(e) ∼̂ η(f)

This uses ascending induction. Hence this forms a
definition only if T is finite, due to the descending
induction step. Now the bunching of T with respect
to ∼ is a tree formed from the partition of C and
E given by this ∼̂, that is, T //∼ is defined to be
T /∼̂, in the usual sense of quotient by an equiv-
alence relation. We call the parts of C and E cell
and edge bunches. Given an edge bunch, its head and
tail are the cell bunches containing, respectively, the
heads and tails of its constituent edges: each of these

414 J. W. Aldis

1

2,3

6,7 8,9

5

11

10

4

ca,b

e,f g,h i

j

d

2 2

2

Fig. 7. The network shown in Fig. 3, bunched by the cell
and edge equivalence relations ∼C and ∼E.

is a single well-defined cell bunch, since edges are
only identified e ∼̂ f where η(e) ∼̂ η(f), and simi-
larly, if edges e ∼̂ f , their tails τ(e) ∼̂ τ(f). Provided
∼ refines ∼C and ∼E, cell and edge bunches have
well-defined types derived from the types of their
members. The cardinality of each edge bunch is
exactly equal to the cardinality of its tail cell bunch,
but instead of cardinality, we interest ourselves with
multiplicity of edge bunches. The multiplicity of an
edge bunch is defined as the sum of the multiplic-
ities of its constituent edges. We can now consider
T //∼ to be a tree in its own right with its “cells”
and “edges” being cell and edge bunches. Figure 7
shows a bunched tree displayed as a tree in this way.
Note that passing from a cell in a tree T to the cell
bunch which contains it in the bunched tree T //∼
preserves generation. Also, it is clear that this pro-
cess relies only on the structure (up to isomorphism)
of T and the equivalence relation ∼. Hence, given
two trees T ,U and a relation ∼ across them such
that T ∼=∼ U , we have T //∼ ∼=∼ U//∼.

For general locally finite trees T , including infi-
nite trees, recall T = limn→∞ T |n, from Lemma 3.5.
Define T //∼ = limn→∞(T |n//∼).

Lemma 3.6. The limit T // ∼ is well defined.

Proof. We must show (T |n//∼) to be a convergent
sequence of trees.

Let c, d be two cells at the same generation g
of T which are not identified in all T |n//∼. Then
there is some nc,d such that c and d are in distinct
cell bunches of T |m//∼ precisely when m ≥ nc,d.

By Lemma 4.1, there is a finite number of cells
at each generation g of T , and so there is a finite
number of pairs of such cells (c, d), and hence a finite

number of nc,d defined as above, for each genera-
tion g. Let ng = max{nc,d|c, d are at generation g}.
Then for m ≥ ng, all cells at generation g (and
below) are bunched in the same way by T |m//∼.
Hence the trees (T |m//∼)|g are all isomorphic for
m ≥ ng.

For a given n ∈ N, consider gn = max{g|ng <
n}. This is the maximal generation g such that the
“final” cell bunches of all cells at generation g are
determined by bunching the tree T |m, and in par-
ticular, (T |m//∼)|gn

∼= (T |m+1//∼)|gn . Every gener-
ation’s bunching must be determined in this way at
some point (since ng is finite for all g ∈ N), so as
n → ∞, gn → ∞. This gives the required conver-
gence isomorphism for (T |n//∼). !

Let T ,U be two trees, and let ∼ be an equiva-
lence relation across T and U . We say T and U are
equivalent with respect to ∼ when they are isomor-
phic with respect to ∼ when bunched by ∼, that is,
T //∼ ∼=∼ U//∼.

Lemma 3.7. Let T be a tree and ∼ an equivalence
relation on T . Let c be a cell of T , correspond-
ing to a cell bunch c∼ in T //∼. Then T(c)//∼ ∼=∼
(T //∼)(c∼).

Proof. Let T be a tree and ∼ an equivalence rela-
tion on T . Let c be a cell of T , corresponding to
a cell bunch c∼ in T //∼. All bunchings T(c′)// ∼ of
subtrees T(c′) rooted at c′ ∈ c∼ must be isomorphic
to each other with respect to ∼, by the definition of
bunching. The bunched subtree (T //∼)(c∼) is pre-
cisely the identification of these trees. !

Proposition 3.8. If T and U are two trees, and
∼ ≤ ≈ are equivalence relations across T and U
such that T is equivalent to U with respect to ∼,
then T is also equivalent to U with respect to ≈.
That is, T //∼ ∼=∼ U//∼ ⇒ T //≈ ∼=≈ U//≈.

Proof. The proof is quite straightforward, although
somewhat lengthy.

Let T ,U ,∼,≈ be as described in the hypotheses
above. We only need to show the conclusion holds
for finite trees, since if F : T //∼

∼=∼−→ U//∼, the
restriction Fn = F |T //∼|n is an isomorphism which

respects ∼, Fn : T //∼
∼=∼−→ U//∼ for each n ∈ N

(by Lemma 3.3). Each of these tree restrictions is
a finite tree, so provided the proposition holds for
all finite trees there is a sequence of functions (Gn :
T //≈|n

∼=≈−→ U//≈|n). By Lemma 3.4 there is a tree

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 415

homomorphism G∞ = limn→∞ Gn, such that G∞ :
T //≈

∼=≈−→ U//≈ is a tree isomorphism with respect
to ≈.

It only remains to show:

T //∼ ∼=∼ U//∼ ⇒ T //≈ ∼=≈ U//≈ (2)

for all finite trees, which we do by induction on the
greater of the depths of T ,U .

Clearly, if depth(T) = depth(U) = 0, then T
and U are single cells: call these t and u, and passing
to the bunched trees T //∼,U//∼ has no effect: that
is, T ∼=∼ T //∼ and U ∼=∼ U//∼, and similarly for
≈. If T ∼=∼ T //∼ ∼=∼ U//∼ ∼=∼ U then t ∼ u and
so t ≈ u. Thus T //≈ ∼=≈ T ∼=≈ U ∼=≈ U//≈. So
Hypothesis 2 holds for trees T ,U of depth 0.

Now suppose the hypothesis 2 holds for all trees
T ,U of depth at most n − 1, and then let T ,U be
some given trees of depth n such that T //∼ ∼=∼
U//∼. We show T //≈ ∼=≈ U//≈, giving 2 for trees of
depth n.

For a cell c in T or U , let c∼ denote the cell
bunch of T //∼ or U//∼ containing c. Similarly,
define c≈ in T //≈, and e∼, e≈ for edges e.

We now show by a second (internal) induction
that for trees T ,U of depth n and a relation ∼, as
in the main inductive hypothesis 2,

T //≈ ∼=≈ (T //∼)//≈ (3)

and similarly for U . Clearly this is true for trees
of depth 0. For the inductive step, assume m ≤ n
is given such that this isomorphism 3 holds for all
trees of depth at most m− 1, and let T be a tree of
depth m.

Now let c, d be cells at generation 1 in T , at
the tails of edges e and f , respectively. We show
that c∼ = d∼ ⇒ c≈ = d≈. Suppose that c∼ = d∼.
Then T(c)//∼ ∼=∼ T(d)//∼. These subtrees T(c) and
T(d), rooted at c and d respectively, are of depth at
most n− 1. So by the main inductive hypothesis 2,
T(c)//≈ ∼=≈ T(d)//≈ (in particular, c ≈ d). Also e ∼
f , so e ≈ f , and both e and f have their heads at
the root of T , so e and f are compatible edges for
bunching by ≈. Thus c≈ = d≈, as required.

This means that the cell bunches in T //≈ are
formed from unions of cell bunches in T //∼. Recall
that bunching preserves equivalence class, c ∼ c∼.
So c ≈ c∼. From Lemma 3.7, (T //∼)(c∼)

∼=∼T(c)//∼.
Since c is not the root of T , depth(T(c)) < depth(T),
and Hypothesis 2 gives (T //∼)(c∼)//≈ ∼=≈ (T(c)//
∼)//≈. Also, by Hypothesis 3, (T(c)//∼)//≈ ∼=≈
T(c)//≈. So (T //∼)(c∼)//≈ ∼=≈ (T(c)//∼)//≈ ∼=≈

T(c)//≈. Hence the cell bunches in T //≈ are pre-
cisely the unions of cell bunches c∼ and d∼ from
T //∼ where c∼ ≈ d∼ and T(c∼)

∼=≈ T(d∼), provided
c∼ and d∼ are tails of some edges e∼, f∼ such that
e∼ ≈ f∼, and the heads of e∼, f∼ are themselves
identified. These are precisely the conditions for
bunching c∼ with d∼ (and e∼ with f∼) when form-
ing the tree (T //∼)//≈. Hence T //≈ ∼=≈ (T //∼)//≈
(clearly any isomorphism preserving ∼ must pre-
serve ≈). This is equally true for U .

Still assuming T //∼ ∼=∼ U//∼, we have T //∼
∼=≈ U//∼, so by the remark after the definition of
bunching, (T //∼)//≈ ∼=≈ (U//∼)//≈.

Thus we have:

T //≈ ∼=≈ (T //∼)//≈ ∼=≈ (U//∼)//≈ ∼=≈ U//≈
and in particular, T //≈ ∼=≈ U//≈, as required.

The proof follows by induction. !

3.6. Operations on bunched trees

Lemma 3.9. If ∼ is an equivalence relation on a
tree T , then (T //∼)|n = T |n//∼.

Proof. Let T be a tree, and ∼ an equivalence rela-
tion on T . A cell bunch c in T //∼ appears in
(T //∼)|n precisely when the generation of c is at
most n, so the generation of each c ∈ c is also
at most n. Thus all such c appear in T |n, and so
the cell bunch c appears in T |n//∼. Similarly for
edge bunches, an edge bunch e in T //∼ appears in
(T //∼)|n precisely when the generation of its tail is
at most n (since the generation of its head is less
than that of its tail). This is the case when the tails
of the constituent edges of e have generation at most
n, thus these edges are in T |n. Hence e is an edge
of (T //∼)|n. !

Lemma 3.10. Let T , U be two trees, with some
equivalence relation ∼ across their cell and edge
sets. Let c be a cell bunch which is a leaf in T //∼ —
that is, all c ∈ c are leaves. Let J be the join of U
to T at each c ∈ c. Then J //∼ is (isomorphic to)
the join of U//∼ to T //∼ at c, considering T //∼ as
a tree in its own right, as usual.

Proof. Since the subtrees rooted at c ∈ c are all
isomorphic to U , they are all isomorphic, with the
same pattern of ∼ equivalence classes, so they are all
isomorphic when bunched by ∼. Thus the cells c ∈ c
can all be bunched together by ∼ in the join J of T
and U . Since nothing else about T has changed in
J , the part of J which corresponds to T is bunched

416 J. W. Aldis

exactly as T //∼. Also, the subtree rooted at c in
J //∼ is precisely the bunched U . !

4. Input Trees and Balanced
Equivalence Relations

We now define “balanced equivalence relations” on
a network N in terms of certain trees, derived from
the structure of N , which we call “input trees”.
We then (Theorem 4.6) prove that the partially
ordered set of these relations forms a lattice, and
(Theorem 4.7) characterize the maximal balanced
equivalence relation in terms of the “infinite input
tree”.

4.1. Input sets and trees

The input edges of a cell c in a network N = (C,E)
are the edges of the form (d, c,λ, i). The input set
of c is a network I(c) = (Cc, Ec) with cell set

Cc = {c} ∪ {de|e = (d, c,λ, i) is an input edge of c}

(de represents the pair (d, e) when used in this con-
text, for clarity) and edge set

Ec = {(de, c,λ, i)|e = (d, c,λ, i)}

This I(c) is clearly a tree of depth 1, with root c.
Cell and edge types are preserved: we extend ∼C

and ∼E such that de ∼C d and (de, c,λ, i) ∼E e =
(d, c,λ, i), and use the appropriate restrictions of

1

1

1

2 5

5

4

4

3

2 543

3

43

c

c

a

a

f b

b

g

g

h

h

d

d

e

e

4

41

1

2

22

2

6

6

π

π

2

3
2/

3
2/

n

0

1

2

3

I (1)n

Fig. 8. Input trees of cell 1 in Fig. 1. Labels on cells c and edges e show which cell or edge from Fig. 1 gave c or e.

these relations as cell and edge equivalences on the
input set of c.

Given a cell c in a network N , we inductively
define the input tree of c of depth n, denoted In(c),
so that each In(c) has root c. The input tree of c of
depth 1, I1(c), is I(c), the input set of c. The input
tree of c of depth n−1, denoted In−1(c), has certain
leaves at depth n−1. Each leaf d is associated with
a cell dN in N . Join the input set of dN to In−1(c)
at d. Having joined all of these input sets, the result
is the new input tree In(c), of depth n. We define
I0(c) to be the tree consisting only of the cell c,
with no edges. See Fig. 8 for an example.

The infinite input tree I∞(c) is the direct limit
of the input trees. This may or may not be an infi-
nite network (even for finite networks N), although
if N is finite with no directed cycle, I∞(c) is finite
for all cells c of N . Also, if N is locally finite, I∞(c)
is also locally finite for all cells c of N .

Lemma 4.1. For cells c from a locally finite
network, each input tree of c of finite depth is finite.
Further, the infinite input tree of such a cell c is
countable, that is, it has a countable number of
cells and edges. (Recall that our use of “countable”
includes “finite”.)

Proof. This proof is routine, and omitted. !

Given a relation ∼ on a network N , we define
the relation of nth input tree equivalence under

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 417

∼ between cells of N , denoted c ∼=n
∼ d (for n ∈

N ∪ {∞}), by c ∼=n
∼ d when the input trees of c

and d are equivalent: In(c)//∼ ∼=∼ In(d)//∼. Since
adding extra generations to two trees can only make
them more different, it is clear that if m ≥ n then
∼= ∼m ≤ ∼=n

∼.

4.2. Limits

Given a sequence of input tree homomorphisms
between the input trees of cells c and d, (F (n)

c,d :
In(c) → In(d)) we now define its limit, the homo-
morphism F (∞)

c,d between the infinite input trees of
cells c and d.

Count, that is, uniquely enumerate from 1, the
cells in I∞(c) in increasing order of generation, with
cells at the same generation enumerated in arbitrary
order. (This is possible because the infinite input
tree is countable, from Lemma 4.1.) Denote the cell
enumerated j ∈ N as cj . For each cell cj , we define
(by induction on j) a strictly increasing sequence
of natural numbers, n(j)

i such that the subsequence

(di,j) = (F (n(j)
i)

c,d) of (F (n)
c,d) is constant on cells ck for

k ≤ j. We then take F (∞)
c,d (cj) = di,j = F

(n(j)
i)

c,d (cj)
(which is constant for all i).

To start the induction, first take n(0)
i = i. Since

the cells are enumerated from 1, this trivially satis-
fies the condition above.

Now assume we have such a sequence (n(k)
i) for

all k < j. In particular, consider n(j−1)
i : (di,j−1) =

(F (n
(j−1)
i)

c,d (cj)) forms a sequence of cells in I∞(d),
all of which are at the same generation as the gen-
eration of cj in I∞(c), by Lemma 3.1. Since, by
Lemma 4.1, there are only a finite number of such
cells, this sequence must have a constant subse-

quence, (di,j) = (F (n
(j)
i)

c,d (cj)), with constant value
dj. (This need not be uniquely defined: if we have
a “natural order” on the cells, we may take the
first possible cell as the value of dj , if not, we
must understand that F (∞)

c,d need not be uniquely
defined.)

Thus by induction we have a sequence n(j)
i for

all j ∈ N such that k, l ≥ j ⇒ F
(n(k)

i)
c,d (cj) =

F
(n(l)

i)
c,d (cj) ∀ i ∈ N, giving well-defined values:

F (∞)
c,d (cj) = lim

k→∞
lim
i→∞

F
(n(k)

i)
c,d (cj) = dj

4.3. Balanced equivalence relations

An equivalence relation ∼ on a network N is said
to be balanced if:

(1) ∼ is a refinement of ∼C and ∼E, the cell
and edge equivalence relations of N . That is,
∼ ≤ ∼N .

(2) c ∼ d for cells c and d only where the input
sets of c and d are equivalent under ∼. That is,
∼ ≤ ∼=1

∼.
(3) e ∼ f for edges e and f only where their tails

are equivalent, that is e ∼ f ⇒ τ(e) ∼ τ(f).
In general, we will define ∼ on cells, and let
e ∼ f precisely when e ∼E f and τ(e) ∼ τ(f).
Clearly, this produces the maximal ∼ on edges
of a network for a given ∼ on its cells.

Figure 9 shows an example of a balanced equiv-
alence relation.

We have defined a balanced equivalence relation
as a relation on (the cells and edges of) a network.
Previous work (for example, [Stewart et al., 2003;
Golubitsky et al., 2004; Golubitsky et al., 2005;
Stewart, 2007]) has defined balanced equivalence
relations as relations only on cells of a network. The
notion of edge equivalence in the definition above
is useful to us, but the definition we use is nat-
urally related to the cell definition. The balanced
cell equivalence relations are exactly the restric-
tions of the balanced network equivalence relations
to the cells of the network; given any balanced cell
equivalence relation ∼, we can extend it naturally
to a balanced network equivalence relation ≈ by
e ≈ f for edges e, f precisely when e ∼E f and
the cells τ(e) ∼ τ(f). As remarked above, this nat-
ural extension ≈ is the maximal balanced network
equivalence relation which is an extension of the cell
relation ∼.

1 2

3 4

1

1

1

1

2

1
1

b

a

c de
f

g

Fig. 9. A balanced equivalence relation on a graph. (Equiv-
alence classes are represented by colors.)

418 J. W. Aldis

Theorem 4.2. Cells of a network N which are
equivalent under a balanced equivalence relation ∼
on N have infinite input trees which are equivalent
with respect to ∼. That is, ∼ ≤ ∼=∞

∼ .

Proof. Let ∼ be a balanced equivalence relation
on a network N , and c, d be two cells of N such
that c ∼ d. Then by definition of balanced equiva-
lence relations, there is a isomorphism of bunched
input sets φ(1)

c,d : I1(c)//∼ → I1(d)//∼ which pre-
serves equivalence class under ∼. We extend this
isomorphism inductively in the same way as the
input tree is defined. Let n be given such that
φ(n−1)

c,d is defined. Start with φ = φ(n−1)
c,d . For each

leaf c′ of In−1(c)//∼, make an arbitrary choice of
contained cell c′ ∈ c′ (a cell of In−1(c)), which
is in turn associated with some cell c′N in N . c′

is taken by φ(n−1)
c,d to some d′: similarly, choose

d′ ∈ d′ with associated cell d′N . Now adjoin the
function φ(1)

c′N ,d′N
to φ at the leaf c′. Once we have

done this for all leaves of In−1(c), we let φ(n)
c,d =

φ : In(c)//∼ → In(d)//∼. This gives a sequence of
isomorphisms φ(n)

c,d : In(c) → In(d) with respect

to ∼, where φ(n+1)
c,d is an extension of φ(n)

c,d for
all n. The limit of this sequence is an isomor-
phism φ(∞)

c,d of infinite input trees bunched by ∼,
which is well defined and preserves ∼, that is,
a ∼-equivalence. Thus cells which are equivalent
under a balanced equivalence relation have input
trees which are equivalent with respect to that
relation. !

Corollary 4.3. If ∼ is a balanced equivalence rela-
tion on a network N , then ∼=∞

∼ is the same relation
as ∼.

Proof. Theorem 4.2 ensures that c ∼ d ⇒ c ∼=∞
∼ d,

so we need only show c ∼=∞
∼ d ⇒ c ∼ d, which we do

in the contrapositive. Suppose c +∼ d. Then the roots
of the trees I∞(c) and I∞(d), which are themselves
c and d respectively, are in different equivalence
classes under ∼. Hence there is no ∼-preserving
isomorphism I∞(c) → I∞(d) (which would take
c 6→ d). Hence c +∼=∞

∼ d, as required. !

A type of limited converse to Theorem 4.2 is
also true.

Lemma 4.4. Given a network N and any equiva-
lence relation ∼ on N which is a refinement of cell

and edge equivalences, the relation ∼=∞
∼ is a balanced

equivalence relation on N .

Proof. Take two cells c, d of N such that c ∼=∞
∼ d.

Then since ∼=∞
∼ is a refinement of ∼=1

∼ (by the remark
after the definition of ∼=n

∼), c ∼=1
∼ d, as required. !

Proposition 4.5. If ∼ and ≈ are two relations on
a network N such that ∼ ≤ ≈, then the relations
∼=∞

∼ and ∼=∞
≈ on N satisfy ∼=∞

∼ ≤ ∼=∞
≈ .

Proof. Let ∼ and ≈ be two relations on a network
N such that ∼ ≤ ≈. Then ∼ is a refinement of
≈, that is c ∼ d ⇒ c ≈ d. Now suppose c ∼=∞

∼ d,
that is, I∞(c)//∼ ∼=∼ I∞(d)//∼ . We must show
c ∼=∞

≈ d, that is, I∞(c)//≈ ∼=≈ I∞(d)//≈. This is
given precisely by Proposition 3.8 for general trees
T and U . Let T = I∞(c) and U = I∞(d) for the
required result. !

As remarked earlier, the ordering ≤ on equiv-
alence relations gives a lattice with minimal ele-
ment = and maximal element %. With the same
partial ordering, the set of balanced equivalence
relations also forms a lattice with a minimal element
(the relation =) and a maximal element (which
we denote %&). One proof of this was given in
[Stewart, 2007]: this proof uses a number of sophis-
ticated techniques to obtain the result for a class
of not-necessarily-finite networks which include all
locally finite networks. We give a more elementary
proof which works for all networks.

Theorem 4.6. For a given network N , the set of
balanced equivalence relations on N forms a com-
plete lattice under the partial order given by refine-
ment. In particular, N has a maximal and a mini-
mal balanced equivalence relation.

Proof. For any network N , = is (trivially) a
balanced equivalence relation, so the set of bal-
anced equivalence relations on N is nonempty and
bounded below.

Take a nonempty set Y of balanced equiva-
lence relations on N . Then let ≈ denote the equiv-
alence relation

∨
Y , their join (taken in the lattice

of equivalence relations on N). We show that this
relation ≈ is balanced: if c ≈ d, then by definition
there is some finite chain c = c0 ∼1 c1 ∼2 · · · ∼n

cn = d with each ∼i ∈ Y . In particular, ∼i is bal-
anced. This means that the input sets of ci−1 and
ci are equivalent under ∼i, so they are equivalent

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 419

under ≈. Since equivalence under ≈ is an equiva-
lence relation, the bunched input set of c = c0 is
isomorphic to that of cn = d with respect to ≈.
Finally, we show that ≈ =

∨
Y is a refinement of

∼N . Since all the relations in Y are refinements of
the cell and edge equivalences ∼N , this ∼N is an
upper bound for Y . Hence

∨
Y ≤ ∼N , as required.

We have shown that the partially-ordered set of
balanced equivalence relations on N has a minimal
element, and that any nonempty subset Y of this
set has a join. By Theorem 2.1, the set of balanced
equivalence relations on N is a complete lattice, and
so it has a maximal element. !

We have shown that there are two relations on
N which are maximal and minimal balanced equiv-
alence relations. As remarked above, the minimal
equivalence relation = is a balanced equivalence
relation, and so it is the minimal balanced equiv-
alence relation. We consider the structure of the
maximal balanced equivalence relation, which we
denote %&. Since it is a balanced equivalence rela-
tion, equivalent cells have isomorphic bunched input
trees with respect to the cell and edge type equiva-
lence relations, by Theorem 4.2. In fact, this condi-
tion precisely categorizes %&.

Theorem 4.7. Given a network N , the maximal
balanced equivalence relation %& on N is given by:
c %& d if and only if I∞(c)//∼N ∼=∼N I∞(d)//∼N .
That is, %& = ∼=∞

∼N .

Proof. The relation %& is balanced, so by Corol-
lary 4.3, ∼=∞

!" = %&. Meanwhile, as a balanced equiv-
alence relation, %& refines ∼N , that is, %& ≤ ∼N .
Hence ∼=∞

!" ≤ ∼=∞
∼N , by Proposition 4.5. Also, by

Lemma 4.4, ∼=∞
∼N is balanced, and hence ∼=∞

∼N ≤
%&. So:

%& = ∼=∞
!" ≤ ∼=∞

∼N ≤ %&

Hence all of these relations are equal, and in partic-
ular, %& = ∼=∞

∼N , as required. !

5. Algorithmic Method

This section contains the main result of this paper.
We describe an algorithm which, given a finite net-
work N , finds the maximal balanced equivalence
relation on N in polynomial time on total number
of cells and edges in N . We do this first in the case
where N is unitary, that is, all multiplicities are
equal to 1, in which case consideration of bunching
is unnecessary, and then we extend it to the gen-
eral case.

5.1. Setup

At each iteration t of the algorithm, each cell c and
each edge e has a natural number attached, nt(c)
and nt(e), (or just n(c) and n(e) when the “current”
iteration is unambiguous). These shall be called the
“colors” of c and e, as cells (and edges) with equal
final values of n(c) (and n(e)) are to be equivalent
under the balanced equivalence relation we aim to
define.

Let |Imax| represent the maximal size of an
input set in N .

Initial conditions: Start with t = 0. Let n0(c) =
[[c]] and n0(e) = [[e]] for all cells c and edges e.

Constraint: |[c]| ≤ max{nt(c)|c ∈ C} ≤ |C| and
|[e]| ≤ max{nt(e)|e ∈ E} ≤| E| for all t. This arises
because these numbers are always an enumeration
of partitions of the cells and edges (giving the right
hand inequalities). Each such partition is a subpar-
tition of the previous one, so max{nt(c)|c ∈ C} is
increasing with t, and the first partition is derived
from cell types, so max{n0(c)|c ∈ C} = |[c]| (and
similarly for edges).

Note: When enumerating quantities associated
with cells or edges, follow the same order of cells
or edges every time. That is, take an arbitrary
“natural order” of cells and edges c1, c2, c3, . . .
such that the number nt(ci) associated with
each ci follows the system: nt(c1) = 1, and
1 ≤ nt(ci+1) ≤ maxj≤i{nt(cj)} + 1. This ensures
that these numbers will be the same in subsequent
enumerations of the same partitions.

5.2. The algorithm

(1) Phase 1:
(a) Associate with each edge e the pair (nt(e),

nt(τ(e))). (|E| operations.)
(b) Compare these pairs with each other and

enumerate them. (2|E|2 operations, at
most.)

(c) Let nt+1(e) be the number given in this
way for the pair associated with e. (|E|
operations.)

(d) Compare nt(e) and nt+1(e): if any of these
numbers are different (that is, n(e) has
changed), or t = 0, continue (that is, go
on to Phase 2). If not, stop. (At most |E|
operations.)

Thus Phase 1 comprises at most 2|E|2 + 3|E|
operations.

420 J. W. Aldis

(2) Phase 2:
(a) Associate with each cell c the multiset

Nt(c) = nt(e)|η(e) = c . Recall that this
gives one element of Nt(c) for each e with
head cell c, even when nt(e) = nt(f) for two
such edges e, f . (Note: writing the multiset
in natural order of edges will ensure that it
is written in an increasing fashion.) (Since
each edge has some unique c at its head,
this is precisely |E| operations.)

(b) Compare these multisets with each other
and enumerate them. (Each of the |C| mul-
tisets has at most |Imax| elements, so this is
at most |Imax||C|2 operations, assuming the
multisets are both increasing, which they
can be by the note above.)

(c) Let nt+1(c) be the number given in this
way for the multiset associated with c. (|C|
operations.)

(d) Compare nt(c) and nt+1(c): if any of these
numbers are different, continue to the next
iteration (that is, go back to Phase 1 with t
increased). If not, stop. (At most |C| oper-
ations.)

Thus Phase 2 comprises at most |Imax||C|2 +
2|C| + |E| operations.

When the algorithm terminates at iteration T ,
use the equivalence relation c ∼ d ⇔ nT (c) = nT (d)
as the required balanced equivalence relation.

Notes

(1) Only one of the steps 1d and 2d is required.
In fact, we can replace this step with a sin-
gle comparison of the maximum n(c) or n(e)
as appropriate, because at each iteration, the
equivalence relation given by n(c) (say) is a
refinement of that at the previous iteration,
so if any number changes, the maximum must
also change. Thus Phase 1 can be bounded by
2|E|2 + 2|E|(+1) operations, and Phase 2 by
|Imax||C|2 + |C|(+1), where the “+1” is used in
the phase which incorporates its step d.

(2) In order to facilitate writing the multiset in step
2a in natural order of edges, let the input be
structured as a list of blocks each consisting of
a cell identifier followed by the edges with heads
at that cell:
Cell c
Edge e with head cell c
Edge f with head cell c
. . .

Cell d
Edge g with head cell d
etc.

Since every edge has exactly one head, each
edge is listed exactly once. Let the input orders
of the cells and edges be their natural orders.

Running time

Theorem 5.1. This algorithm is quartic in |E| +
|C|.

Proof. At every iteration, by summing the opera-
tion counts shown in the algorithm, we can see that
there are at most |Imax||C|2+2|E|2+3|E|+|C|+1 ≤
|E||C|2 +2|E|2 +3|E|+ |C|+1 ≤ N3+2N2+3N +1
operations, where N = |E| + |C| is the length of
the problem. Hence each iteration is cubic in the
length of the problem, but better estimates of the
time may be obtained from the above formula with
knowledge of how the data set is broken down into
edges and cells (for example, if the number of cells
is held constant, each iteration becomes quadratic
in the number of edges, and vice versa).

If part 2d is chosen (rather than part 1d), the
algorithm can run for at most |C| iterations, since
at every iteration, except the last one the maximum
n(c) is strictly increasing, by Note 1. In fact, since
the maximum n(c) starts at |[c]| and cannot get
higher than |C|, the maximum number of iterations
is (|C| − |[c]|) + 1 (the one additional stage is the
one on which the algorithm makes no change to the
n(c)s, and terminates.) By an analogous argument,
if part 1d is chosen, the maximum number of itera-
tions is (|E|− |[e]|)+2. (The first iteration does not
necessarily increase the maximum n(e), since part
1d does not take effect until then.)

This gives the algorithm a total running time
bounded above by:

(|E| + 2 − |[e]|)(N3 + 2N2 + 3N + 1)

or:

(|C| + 1 − |[c]|)(N3 + 2N2 + 3N + 1)

operations, depending on whether part 1d or 2d
is included, respectively. These upper bounds are
quartic in the size |E| + |C| of the problem. !

5.3. Correctness

It remains to show that the algorithm gives the cor-
rect result.

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 421

Theorem 5.2. The relation given by the algorithm
is the maximal balanced equivalence relation.

Proof. We show that cells colored the same are infi-
nite input tree equivalent, and then the converse.
Recall that we are currently assuming all edges to
have a multiplicity of 1, and hence c ∼=n

∼ d precisely
when In(c) ∼=∼ In(d).

Firstly, we show that all cells colored the same
by the algorithm are input set (first input tree)
equivalent: as mentioned in Note 1, each nt gives
a relation which is a refinement of that given by nt

for smaller (earlier) t. Thus nT gives a refinement
of, in particular, n1. If c, d are two cells such that
n1(c) = n1(d), then each edge with head at c must
have a corresponding edge of the same edge type
with head at d and the same cell type at its tail.
Thus define a function F (1)

c,d : I1(c) → I1(d) using

these correspondences — F (1)
c,d is a first input tree

(input set) equivalence.
Now we use induction to show that all cells

of the same color are infinite input tree equiva-
lent. Suppose all the cells colored the same by the
algorithm are kth input tree equivalent, giving a
balanced tree function F (i)

c,d between any identically-
colored cells for 0 ≤ i ≤ k. Then consider the
(k + 1)th input trees of two cells c, d of the same
color. Extend F (k)

c,d to F (k+1)
c,d : take pairs of identi-

cally colored cells c′, d′ at the kth level of the input
trees of c, d respectively, where F (k)

c,d (c′) = d′, and

adjoin F (1)
c′,d′ to F (k+1)

c,d at c′. By induction, the nth
input trees of c and d are isomorphic for all n, and
so the infinite input trees are also isomorphic, by
Sec. 4.2.

Now we show the converse, that is, cells which
are infinite input tree equivalent are colored the
same by the algorithm.

It is clear that any two cells c, d which are input
tree equivalent satisfy n0(c) = n0(d), for in partic-
ular, they must have the same cell type, [c] = [d],
and so [[c]] = [[d]]. For any two cells c, d which are
input tree equivalent, there is an input tree equiv-
alence map between I(∞)(c) and I(∞)(d) which we
shall denote F (∞)

c,d , as usual. Edges e, f which are
identified by this equivalence must have the same
edge type, and so n0(e) = n0(f). For induction,
suppose t is such that any two cells c, d that are
input tree equivalent satisfy nt(c) = nt(d), and fur-
ther, for the same t, given an edge e in the input
set of c and the corresponding edge f = F (∞)

c,d (e) in

the input set of d, nt(e) = nt(f). Then take some
pair of cells c, d that are input tree equivalent. The
multisets nt(e)|η(e) = c and nt(e)|η(e) = d
associated with the cells c and d at stage t + 1 of
the algorithm must be equal, since the edges must
pair up by F (∞)

c,d . So nt+1(c) = nt+1(d). Further, the
pairs (nt(e), nt(τ(e))) and (nt(f), nt(τ(f))), associ-
ated with e and f respectively, are also equal; thus,
nt+1(e) = nt+1(f). Then by induction, nT (c) =
nT (d) where T is the final value of t used in the
algorithm, and c and d are given the same color, as
required. !

Example

We illustrate this algorithm using the (homoge-
neous) unitary network described earlier in Fig. 2. It
is worth noticing that this network has no nontrivial
automorphisms, so a classical symmetry approach,
treating cells c and d as equivalent precisely when
there is an automorphism of the network which
maps c to d, would give six equivalence classes of
cells as “colors” — the trivial (balanced) equiva-
lence relation of equality. Meanwhile, there are two
equivalence classes of cells under input set equiv-
alence. We shall see that the maximal balanced
equivalence relation falls between these.

We take the natural order of the cells to be
of numerical order, and that of the edges to be
alphabetic.

At each iteration t, we show the numbers nt(c)
and nt(e) as colors, to allow us to label the cells
using numbers as usual. Table 1 shows the results.

5.4. Multiplicity and bunching

We now describe a more general algorithm, to take
into account the possibility of nonunitary networks,
that is, networks where edges may have any mul-
tiplicities. Obviously, if we wished only to allow
edges to be paired with edges of the same multiplic-
ity (ignoring bunching), we could replace Phase 1,
step 1 with:

(1) (a) Associate with each edge e the triple
(|e|, nt(e), nt(τ(e))), where |e| is the multiplic-
ity of edge e. (|E| operations, as before.)

However, as shown in [Golubitsky et al., 2005] and
described earlier, when matching up input sets of
two cells c and d, we wish to find an isomorphism
between their bunched equivalents.

422 J. W. Aldis

Table 1. An example of the algorithm to determine the maximal balanced equivalence relation for a unitary network.

t Phase Steps

0 1 (a)

1

23

4

5 6

a

be

d

c

f

g

h

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(b) (1, 1) #→ 1

(c)

1

23

4

5 6

a

be

d

c

f

g

h (d) Continue (forced since t = 0)

2 (a)

1

23

4

5 6

a

be

d

c

f

g

h

1

1

1,1

1

1

1,1

(b)
1 #→ 1

1, 1 #→ 2

(c)

1

23

4

5 6

a

be

d

c

f

g

h (d) Continue

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 423

Table 1. (Continued)

t Phase Steps

1 1 (a)

1

23

4

5 6

a

be

d

c

f

g

h

(1,1)

(1,2)

(1,2)

(1,1)

(1,1)

(1,2)

(1,1)

(1,2)

(b)
(1, 1) #→ 1

(1, 2) #→ 2

(c)

1

23

4

5 6

a

be

d

c

f

g

h (d) Continue

2 (a)

1

23

4

5 6

a

be

d

c

f

g

h

2

1

1,2

1

2

1,2

(b)

1 #→ 1

2 #→ 2

1, 2 #→ 3

(c)

1

23

4

5 6

a

be

d

c

f

g

h (d) Continue

424 J. W. Aldis

Table 1. (Continued)

t Phase Steps

2 1 (a)

1

23

4

5 6

a

be

d

c

f

g

h

(1,2)

(2,3)

(2,3)

(1,1)

(1,1)

(2,3)

(1,2)

(2,3)

(b)

(1, 2) #→ 1

(2, 3) #→ 2

(1, 1) #→ 3

(c)

1

23

4

5 6

a

be

d

c

f

g

h (d) Continue

2 (a)

1

23

4

5 6

a

be

d

c

f

g

h

2

1

2,3

1

2

2,3

(b)
1 #→ 1
2 #→ 2

2, 3 #→ 3

(c)

1

23

4

5 6

a

be

d

c

f

g

h

(d) Cell numbers
have not
changed since
t = 1. Stop.

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 425

In order to do this, instead of the replacement to
Phase 1, step a above, replacePhase 2, step awith:
(2) (a) For each cell c consider the set of edge num-

bers Tc = {nt(e)|η(e) = c}. Now for each n in
Tc, consider the sum λn =

∑
nt(e)=n,η(e)=c |e|.

Now associate with c the set {(n,λn)|n ∈ Tc}.
Each of these pairs precisely corresponds to the
bunch e where n(e) = n for e ∈ e. This set
may be constructed in a more direct way in
practice: keep the representation of the set in

Table 2. An example of the algorithm to determine the maximal balanced equivalence relation for a general network.

t Phase Steps

0 1 (a)

1 2

3 4

1

1

1

1

2

1
1

b

a

c

d

e

f

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

g

(b) (1, 1) #→ 1

(c)

1 2

3 4

1

1

1

1

2

1
1

b

a

c de
f

g

(d) Continue (forced
since t = 0)

2 (a)

1 2

3 4

1

1

1

1

2

1
1

b

a

c de
f

g

{(1,1)} {(1,3)}

{(1,3)} {(1,1)}

(b)
{(1, 1)} #→ 1

{(1, 3)} #→ 2

(c)

1 2

3 4

1

1

1

1

2

1
1

b

a

c de
f

g

(d) Continue

426 J. W. Aldis

Table 2. (Continued)

t Phase Steps

1 1 (a)

1 2

3 4

1

1

1

1

2

1
1

e

b

a

d

(1,2)

(1,1)

(1,1)

(1,2)

(1,1)

g

c

f
(1,1)

(1,1)

(b)
(1, 1) #→ 1

(1, 2) #→ 2

(c)

1

4

1

1

1

1

2

1
1

b

a

c de
f

g

2

3
(d) Continue

2 (a)

1

4

1

1

1

1

2

1
1

b

a

c de
f

g

2

3{(1,1)} {(1,2),(2,1)}

{(1,2),(2,1)} {(1,1)}

(b)
{(1, 2), (2, 1)} #→ 1

{(1, 1)} #→ 2

(c)

1

4

1

1

1

1

2

1
1

b

a

c de
f

g

2

3
(d) Cell numbers have

not changed since
t = 0. Stop.

A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations 427

order of increasing n. For each edge e with the
given head cell c, find the pair in the set asso-
ciated with c = η(e) whose first component
is nt(e). Add |e| to the second component. If
we reach a pair in the set whose first compo-
nent is greater than nt(e) without finding one
whose first component is exactly nt(e), insert
(nt(e), |e|) before this greater pair. (Still at most
|E| operations.)

This replacement makes no difference to running
time estimates.

This replacement treats a set of equivalent
edges with equivalent tails and the same head as
a single edge with multiplicity equal to the sum of
the multiplicities of the original edges for the pur-
pose of matching input sets, while leaving the orig-
inal network unchanged — so if two cells c, d have
nt(c) = nt(d) but nt+1(c) += nt+1(d) then edges
from c and d will not be treated as part of the same
“bunch” at iteration t + 1, even though they were
treated as such at iteration t. Thus this change to
the algorithm provides exactly the desired result.

Example

We give a short example to demonstrate this algo-
rithm in use, calculating the maximal balanced
equivalence relation of the network shown in Fig. 9.
As before, we take numerical and alphabetical nat-
ural orders of cells and edges, respectively. Table 2
shows the results.

Acknowledgments

Some of the details of the algorithm were sug-
gested and refined during a productive conversation

with Daan Krammer, for which the author is very
grateful.

The research in this paper was undertaken
while studying at the University of Warwick. The
majority of this research was submitted for the
degree of Master of Science [Aldis, 2005]; the excep-
tion being Theorem 4.6, which was proved while
studying for the degree of Doctor of Philosophy. The
paper was also edited and prepared for submission
during the latter course of study; this course was
partially supported by a grant from EPSRC. Both
of these courses of study have benefited from the
invaluable supervision of Professor Ian Stewart.

References

Aldis, J. W. [2005] “A polynomial time algorithm to
determine maximal balanced equivalence relations,”
Masters thesis, University of Warwick.

Davey, B. A. & Priestley, H. A. [1990] Introduction to
Lattices and Order, 1st edition (Cambridge University
Press, Cambridge).

Golubitsky, M., Stewart, I. N. & Nicol, M. [2004] “Some
curious phenomena in coupled cell networks,” J. Non-
lin. Sci. 14, 207–236.

Golubitsky, M., Stewart, I. N. & Török, A. [2005] “Pat-
terns of synchrony in coupled cell networks with mul-
tiple arrows,” SIAM J. Appl. Dyn. Syst. 4, 78–100.

Golubitsky, M. & Stewart, I. N. [2006] “Nonlinear
dynamics of networks: The groupoid formalism,” Bull.
Amer. Math. Soc. 43, 305–364.

Stewart, I. N., Golubitsky, M. & Pivato, M. [2003] “Sym-
metry groupoids and patterns of synchrony in coupled
cell networks,” SIAM J. Appl. Dyn. Syst. 2, 609–646.

Stewart, I. N. [2007] “The lattice of balanced equiva-
lence relations of a coupled cell network,” Math. Proc.
Camb. Phil. Soc. 143, 165–183.

